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Abstract

The Dakota toolkit provides a flexible and extensible interface between simulation codes and iterative analysis
methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty
quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear
least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods.
These capabilities may be used on their own or as components within advanced strategies such as surrogate-
based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing
object-oriented design to implement abstractions of the key components required for iterative systems analyses,
the Dakota toolkit provides a flexible and extensible problem-solving environment for design and performance
analysis of computational models on high performance computers.

This report serves as a user’s manual for the Dakota software and provides capability overviews and procedures
for software execution, as well as a variety of example studies.
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Preface

The Dakota project started in 1994 as an internal research and development activity at Sandia National Labora-
tories in Albuquerque, New Mexico. The original goal was to provide a common set of optimization tools for
a group of engineers solving structural analysis and design problems. Prior to the Dakota project, there was no
focused effort to archive optimization methods for reuse on other projects. Thus, engineers found themselves
repeatedly building new custom interfaces between the engineering analysis software and optimization software.
This was especially burdensome when using parallel computing, as each project developed a unique master pro-
gram to coordinate concurrent simulations on a network of workstations or a parallel computer. The initial Dakota
toolkit provided the engineering and analysis community at Sandia access to a variety of optimization algorithms,
hiding the complexity of the optimization software interfaces from the users. Engineers could readily switch
between optimization software packages by simply changing a few lines in a Dakota input file. In addition to
structural analysis, Dakota has been applied to computational fluid dynamics, nonlinear dynamics, shock physics,
heat transfer, electrical circuits, and many other science and engineering models.

Dakota has grown significantly beyond an optimization toolkit. In addition to its state-of-the-art optimization
methods, Dakota includes methods for global sensitivity and variance analysis, parameter estimation, uncertainty
quantification, and verification, as well as meta-level strategies for surrogate-based optimization, hybrid optimiza-
tion, and optimization under uncertainty. Available to all these algorithms is parallel computation support; ranging
from desktop multiprocessor computers to massively parallel computers typically found at national laboratories
and supercomputer centers.

As of Version 5.0, Dakota is publicly released as open source under a GNU Lesser General Public License and
is available for free download world-wide. See http://www.gnu.org/licenses/lgpl.html for more
information on the LGPL software use agreement. Dakota Versions 3.0 through 4.2+ were licensed under the GNU
General Public License. Dakota public release facilitates research and software collaborations among Dakota
developers at Sandia National Laboratories and other institutions, including academic, government, and corporate
entities. See the Dakota FAQ at http://dakota.sandia.gov/fag-page for more information on the
public release rationale and ways to contribute.

For a listing of current and former contributors and third-party library developers, visit the Dakota webpage at
http://dakota.sandia.gov.

Contact Information:

Manager Optimizaion & Uncertainty Quantification Department

Sandia National Laboratories

P.O. Box 5800, MS-1318

Albuquerque, NM 87185-1318

Web (including support information): http://dakota.sandia.gov


http://www.gnu.org/licenses/lgpl.html
http://dakota.sandia.gov/faq-page
http://dakota.sandia.gov
http://dakota.sandia.gov
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Chapter 1

Introduction

1.1 Motivation for Dakota Development

Computational models are commonly used in engineering design and scientific discovery activities for simulating complex
physical systems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural mechanics,
shock physics, and many others. These simulators can be an enormous aid to engineers who want to develop an understanding
and/or predictive capability for complex behaviors typically observed in the corresponding physical systems. Simulators often
serve as virtual prototypes, where a set of predefined system parameters, such as size or location dimensions and material
properties, are adjusted to improve the performance of a system, as defined by one or more system performance objectives.
Such optimization or tuning of the virtual prototype requires executing the simulator, evaluating performance objective(s),
and adjusting the system parameters in an iterative, automated, and directed way. System performance objectives can be for-
mulated, for example, to minimize weight, cost, or defects; to limit a critical temperature, stress, or vibration response; or
to maximize performance, reliability, throughput, agility, or design robustness. In addition, one would often like to design
computer experiments, run parameter studies, or perform uncertainty quantification (UQ). These approaches reveal how sys-
tem performance changes as a design or uncertain input variable changes. Sampling methods are often used in uncertainty
quantification to calculate a distribution on system performance measures, and to understand which uncertain inputs contribute
most to the variance of the outputs.

A primary goal for Dakota development is to provide engineers and other disciplinary scientists with a systematic and rapid
means to obtain improved or optimal designs or understand sensitivity or uncertainty using simulation-based models. These
capabilities generally lead to improved designs and system performance in earlier design stages, alleviating dependence on
physical prototypes and testing, shortening design cycles, and reducing product development costs. In addition to providing
this practical environment for answering system performance questions, the Dakota toolkit provides an extensible platform for
the research and rapid prototyping of customized methods and meta-algorithms [34].

1.2 Dakota Capabilities

Dakota delivers a variety of iterative methods and meta-algorithms, and the ability to flexibly interface them to your simu-
lation code. While Dakota was originally conceived to more readily interface simulation codes and optimization algorithms,
recent versions go beyond optimization to include other iterative analysis methods such as uncertainty quantification with
nondeterministic propagation methods, parameter estimation with nonlinear least squares solution methods, and sensitivity/-
variance analysis with general-purpose design of experiments and parameter study capabilities. These capabilities may be used
on their own or as building blocks within more sophisticated meta-algorithms such as hybrid optimization, surrogate-based
optimization, optimization under uncertainty, or mixed aleatory/epistemic UQ.
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The principal classes of Dakota algorithms, with brief descriptions, are summarized here. For details, formulations, and usage
guidelines, see the referenced chapters.

* Parameter Studies (Chapter 3): Parameter studies employ deterministic designs to explore the effect of parametric
changes within simulation models, yielding one form of sensitivity analysis. They can help assess simulation charac-
teristics such as smoothness, multi-modality, robustness, and nonlinearity, which affect the choice of algorithms and
controls in follow-on optimization and UQ studies. Typical examples include centered, one-at-a-time variations or joint
variation on a grid.

* Design of Experiments (Chapter 4): Design and analysis of computer experiments (DACE) techniques are often used
to explore the parameter space of an engineering design problem, for example to perform global sensitivity analysis.
DACE methods can help reach conclusions similar to parameter studies, but the primary goal of these methods is
to generate good coverage of the input parameter space. Representative methods include Latin hypercube sampling,
orthogonal arrays, and Box-Behnken designs.

¢ Uncertainty Quantification (Chapter 5): Uncertainty quantification methods (also referred to as nondeterministic anal-
ysis methods) compute probabilistic information about response functions based on simulations performed according to
specified input parameter probability distributions. Put another way, these methods perform a forward uncertainty prop-
agation in which probability information for input parameters is mapped to probability information for output response
functions. Common approaches include Monte Carlo sampling, reliability methods, and polynomial chaos expansions.

* Optimization (Chapter 6): Optimization solvers seek to minimize cost or maximize system performance, as predicted
by the simulation model, subject to constraints on input variables or secondary simulation responses. Categories of
algorithms include gradient-based, derivative-free, and global optimization. Dakota also includes capabilities for multi-
objective trade-off optimization and automatic scaling of problem formulations. Advanced Dakota approaches include
hybrid (multi-method), multi-start local, and Pareto-set optimization.

 Calibration (Chapter 7): Calibration algorithms seek to maximize agreement between simulation outputs and experi-
mental data (or desired outputs). They are used to solve inverse problems (often referred to as parameter estimation or
least-squares problems). Dakota approaches include nonlinear least squares and Bayesian calibration.

Dakota includes a number of related advanced capabilities. Surrogate models are inexpensive approximate models that are
intended to capture the salient features of an expensive high-fidelity model and include data fits, multifidelity, and reduced-
order model surrogates. They can be used to explore the variations in response quantities over regions of the parameter space,
or they can serve as inexpensive stand-ins for optimization or uncertainty quantification studies. Section 8.4 summarizes
surrogate model mechanics in Dakota, while optimization methods tailored to particular surrogate approaches are surveyed in
Section 14.6.

Nested models permit layering one Dakota method over another, enabling algorithms like mixed epistemic-aleatory or second-
order UQ, optimization under uncertainty, or surrogate-based UQ. Additional information on these nested approaches is pro-
vided in Section 8.5 and Chapter 15.

The methods and algorithms in Dakota are designed to exploit parallel computing resources such as those found in a desktop
multiprocessor workstation, a network of workstations, or a massively parallel computing platform. This parallel comput-
ing capability is a critical technology for rendering real-world engineering design problems computationally tractable. See
Chapter 17.

Dakota also has emerging capabilities in solution verification and Bayesian calibration/UQ, which are documented briefly in
the Dakota Reference Manual, and in later sections of this manual.

In addition to its iterative methods and algorithms, Dakota also provides a graphical user interface that allows you to manage
your Dakota studies visually. Among other features, the GUI allows you to intuitively link your Dakota study to a simulation
model (see Section 1.3 below) as well as graphically plot output data from your Dakota study. For the full Dakota GUI tutorial,
please visit this link: https://dakota.sandia.gov/content/latest-gui-manual.

Dakota Version 6.15 User’s Manual generated on November 10, 2021


https://dakota.sandia.gov/content/latest-gui-manual

1.3. COUPLING DAKOTA TO A SIMULATION 21

I DAKOTA
DAKOTA DAKOTA
Parameters File Results File

| Data Data

I Pre-processing Post-processing |

Simulation Simulation
( [nput File ) User’s
[ o Simulation
Code

Figure 1.1: The loosely-coupled or “black-box” interface between Dakota and a user-supplied simulation code.

1.3 Coupling Dakota to a Simulation

A key Dakota advantage is access to a broad range of iterative capabilities through a single, relatively simple, interface
between Dakota and your simulator. Trying a different iterative method or meta-algorithm typically requires changing only
a few commands in the Dakota text input file and starting the new analysis. It does not require intimate knowledge of the
underlying software package integrated in Dakota, with its unique command syntax and interfacing requirements. In addition,
Dakota will manage concurrent executions of your computational model in parallel, whether on a desktop or high-performance
cluster computer.

Figure 1.1 depicts a typical loosely-coupled relationship between Dakota and the simulation code(s). Such coupling is often
referred to as “black-box,” as Dakota has no (or little) awareness of the internal details of the computational model, obviating
any need for its source code. Such loose coupling is the simplest and most common interfacing approach Dakota users employ.
Dakota and the simulation code exchange data by reading and writing short data files. Dakota is executed with commands
that the user supplies in a text input file (not shown in Figure 1.1) which specify the type of analysis to be performed (e.g.,
parameter study, optimization, uncertainty quantification, etc.), along with the file names associated with the user’s simulation
code. During operation, Dakota automatically executes the user’s simulation code by creating a separate process external to
Dakota.

The solid lines in Figure 1.1 denote file input/output (I/O) operations inherent to Dakota or the user’s simulation code. The
dotted lines indicate passing or converting information that must be implemented by the user. As Dakota runs, it writes out a
parameters file containing the current variable values. Dakota then starts the user’s simulation code (or, often, a short driver
script wrapping it), and when the simulation completes, reads the response data from a results file. This process is repeated
until all of the simulations required by the iterative study are complete.

In some cases it is advantageous to have a close coupling between Dakota and the simulation code. This close coupling is an
advanced feature of Dakota and is accomplished through either a direct interface or a SAND (simultaneous analysis and design)
interface. For the direct interface, the user’s simulation code is modified to behave as a function or subroutine under Dakota.
This interface can be considered to be “semi-intrusive” in that it requires relatively minor modifications to the simulation code.
Its major advantage is the elimination of the overhead resulting from file I/O and process creation. It can also be a useful
tool for parallel processing, by encapsulating all computation in a single executable. For details on direct interfacing, see
Section 16.2. A SAND interface approach is “fully intrusive” in that it requires further modifications to the simulation code so
that an optimizer has access to the internal residual vector and Jacobian matrices computed by the simulation code. In a SAND
approach, both the optimization method and a nonlinear simulation code are converged simultaneously. While this approach
can greatly reduce the computational expense of optimization, considerable software development effort must be expended to
achieve this intrusive coupling between SAND optimization methods and the simulation code. SAND may be supported in
future Dakota releases.
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1.4 User’s Manual Organization

The Dakota User’s Manual is organized into the following major categories. New users should consult the Tutorial to get
started, then likely the Method Tour and Interfacing to select a Dakota method and build an interface to your code.

* Tutorial (Chapter 2): How to obtain, install, and use Dakota, with a few introductory examples.

¢ Method Tour (Chapters 3 through 7): Survey of the major classes of iterative methods included in Dakota, with
background, mathematical formulations, usage guidelines, and summary of supporting third-party software.

* Models (Chapters 8 through 11): Explanation of Dakota models, which manage the mapping from variables through
interfaces to responses, as well as details on parameter and response file formats for simulation code interfacing.

¢ Input/Output (Chapters 12 and 13): Summary of input to Dakota, including tabular data, and outputs generated by
Dakota.

¢ Advanced Topics:

— Recursion with Components: Chapter 14 addresses component-based method recursions, and Chapter 15 ad-
dresses component-based model recursions.

— Interfacing: Chapter 16 describes interfacing Dakota with engineering simulation codes in both loose- and
tightly-coupled modes.

— Parallelism: Chapter 17 describes Dakota’s parallel computing capabilities, with a summary of major application
parallel modes in Section 17.7.

— Fault Tolerance: Chapter 18 describes restart capabilities and utilities, and Chapter 19 explains ways to detect
and mitigate simulation failures.

* Additional Examples (Chapter 20): Supplemental example analysis problems and discussion.

1.5 Files Referenced in this Manual

Dakota input files are shown in figures throughout the Manual. The filename is specified in the comments and unless specified
otherwise, these files are available in the dakota/share/dakota/examples/users directory, where dakota/ refers
to the directory where Dakota was installed. Some of the input files have associated files, such as output or tabular data, with
the same base filename, and . sav appended to the names.

Additional files are referenced, and if the location differs then it will be specified in the text. A small number of examples
refer to files included only in the source directory, which is labeled dakota_source/. You will need a copy of the source
to view these files - see Section 2.1.1.

Dakota 6.14 and newer include a refreshed Examples Library, ranging from examples of Dakota input files and basic studies
through complete case studies. These can be found in binary distributions in dakota/share/dakota/examples/
official (dakota/dakota-examples in source distributions). Legacy examples, including many from the Dakota
software manuals appear in other directories in dakota/share/dakota/examples (dakota/examples for source).

1.6 Summary

Dakota is both a production tool for engineering design and analysis activities and a research tool for the development of new
algorithms in optimization, uncertainty quantification, and related areas. Because of the extensible, object-oriented design of
Dakota, it is relatively easy to add new iterative methods, meta-algorithms, simulation interfacing approaches, surface fitting
methods, etc. In addition, Dakota can serve as a rapid prototyping tool for algorithm development. That is, by having a broad
range of building blocks available (i.e., parallel computing, surrogate models, simulation interfaces, fundamental algorithms,
etc.), new capabilities can be assembled rapidly which leverage the previous software investments. For additional discussion
on framework extensibility, refer to the Dakota Developers Manual [2].
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The capabilities of Dakota have been used to solve engineering design and optimization problems at Sandia Labs, at other
Department of Energy labs, and by our industrial and academic collaborators. Often, this real-world experience has provided
motivation for research into new areas of optimization. The Dakota development team welcomes feedback on the capabilities
of this software toolkit, as well as suggestions for new areas of research.
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Chapter 2

Dakota Tutorial

2.1 Quickstart

This section provides an overview of acquiring and installing Dakota, running a simple example, and looking at the basic
output available. More detailed information about downloads and installation can be found on the Dakota website http:
//dakota.sandia.gov.

2.1.1 Acquiring and Installing Dakota

Dakota operates on most systems running Unix or Linux operating systems as well as on Windows, natively in a Command
Prompt window, and (optionally) with the help of a Cygwin emulation layer. Dakota is developed and most extensively tested
on Redhat Enterprise Linux with GNU compilers, but additional operating system / compiler combinations are regularly tested
as well. See the Dakota website for more information on supported platforms for particular Dakota versions.

Department of Energy users: Dakota may already be available on your target system. Sandia users should visit http:
//dakota.sandia.gov/ for information on supported Dakota installations on engineering networks and cluster com-
puters, as well as for Sandia-specific downloads. At other DOE institutions, contact your system administrator about Dakota
availability. If Dakota is not available for your target platform, you may still download Dakota as described below.

New users should visit http://dakota.sandia.gov/quickstart.html to get started with Dakota. This typically
involves the following steps:

1. Download Dakota.
You may download binary executables for your preferred platforms or you can compile Dakota from source code.
Downloads are available from http://dakota.sandia.gov/download.html.

2. Install Dakota.
Instructions are available from http://dakota.sandia.gov/content/install-dakota. Guidance is
also included in Dakota distributions, e.g., dakota/share/dakota/INSTALL (or dakota_source/INSTALL).
Further platform/operating system-specific guidance can be found in dakota/share/dakota/examples/platforms
(dakota_source/examples/platforms).

3. Verify that Dakota runs.
To perform a quick check that your Dakota executable runs, open a terminal window (in Windows, cmd.exe), and type:
dakota -v
Dakota version information should display in your terminal window. For a more detailed description of Dakota com-
mand line options, see Section 2.4.


http://dakota.sandia.gov
http://dakota.sandia.gov
http://dakota.sandia.gov/
http://dakota.sandia.gov/
http://dakota.sandia.gov/quickstart.html
http://dakota.sandia.gov/download.html
http://dakota.sandia.gov/content/install-dakota
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4. Participate in Dakota user communities.
Join Dakota mail lists to get the most up-to-date guidance for downloading, compiling, installing, or running. For
information about mail lists, getting help, and other available help resources, see http://dakota.sandia.gov/
content/get-help.

2.1.2 Running Dakota with a simple input file

This section is intended for users who are new to Dakota, to demonstrate the basics of running a simple example.

First Steps

1. Make sure Dakota runs. You should see Dakota version information when you type: dakota -v
2. Create a working directory

3. Copy rosen_multidim. in from the dakota/share/dakota/examples/users/ directory to the working
directory — see Section 1.5 for help.

4. From the working directory, run dakota —i rosenmultidim.in -o rosenmultidim.out > rosenmultidim.stdout

What should happen
Dakota outputs a large amount of information to help users track progress. Four files should have been created:

1. The screen output has been redirected to the file rosen_multidim.stdout. The contents are messages from
Dakota and notes about the progress of the iterator (i.e. method/algorithm).

2. The output file rosen_multidim.out contains information about the function evaluations.

3. rosen_multidim.dat is created due to the specification of tabular_data and
tabular_data_file. This summarizes the variables and responses for each function evaluation.

4. dakota.rst isarestart file. If a Dakota analysis is interrupted, it can be often be restarted without losing all progress.
Dakota has some data processing capabilities for output analysis. The output file will contain the relevant results. In this case,

the output file has details about each of the 81 function evaluations. For more advanced or customized data processing or
visualization, the tabular data file can be imported into another analysis tool.

What now?
* Assuming Dakota ran successfully, skim the three text files (restart files are in a binary format). These are described
further in Section 2.1.3.

» This example used a parameter study method, and the rosenbrock test problem. More details about the example are
in Section 2.3.2 and the test problem is described in Sections 2.3.1 and 20.2.

* Explore the many methods available in Dakota in Chapters 3—7.

e Try running the other examples in the same directory. These are mentioned throughout the manual and are listed in
Table 2.1 for convenience.

* Learn the syntax needed to use these methods. For help running Dakota, see Section 2.4 and for input file information,
see Section 2.2.

* Learn how to use your own analysis code with Dakota in Chapter 16.

2.1.3 Examples of Dakota output

Beyond numerical results, all output files provide information that allows the user to check that the actual analysis was the
intended analysis. More details on all outputs can be found in Chapter 13.

Screen output saved to a file
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Whenever an output file is specified for a Dakota run, the screen output itself becomes quite minimal consisting of version
statements, environment statements and execution times.

Output file

The output file is much more extensive, because it contains information on every function evaluation (See Figure 2.1). Ex-
cluding the copy of the input file at the beginning and timing information at the end, the file is organized into three basic
parts:

1. Information on the problem

For this example, we see that a new restart file is being created and Dakota has carried out a multi-
dim_parameter_study with 8 partitions for each of two variables.

2. Information on each function evaluation

Each function evaluation is numbered. Details for function evaluation 1 show that at input variable values
rl = —2.0 and 22 = —2.0, the direct rosenbrock function is being evaluated. There is one response with
a value of 3.609e+03.

3. Summary statistics

The function evaluation summary is preceded by <<<<<. For this example 81 total evaluations were
assessed; all were new, none were read in from the restart file. Correlation matrices complete the statistics
and output for this problem. Successful runs will finish with < << << Iterator study_type completed.

Tabular output file

For this example, the default name for the tabular output file dakota_tabular.dat was changed in the input file to
rosen_multidim.dat. This tab-delimited text file (Figure 2.1.3) summarizes the inputs and outputs to the function
evaluator. The first line contains the names of the variables and responses, as well as headers for the evaluation id and interface
columns.

$eval_id interface x1 X2 response_fn_1

The number of function evaluations will match the number of evaluations listed in the summary part of the output file for single
method approaches; the names of inputs and outputs will match the descriptors specified in the input file. The interface
column is useful when a Dakota input file contains more than one simulation interface. In this instance, there is only one, and
it has no id_interface specified, so Dakota has supplied a default value of NO_ID. This file is ideal for import into other
data analysis packages.

2.2 Dakota Input File Format

See Section 1.5 for location of all files referenced in this manual.

There are six specification blocks that may appear in Dakota input files. These are identified in the input file using the following
keywords: variables, interface, responses, model, method, and environment. While, these keyword blocks can appear in any
order in a Dakota input file, there is an inherent relationship that ties them together. The simplest form of that relationship is
shown in Figure 2.3 and can be summarized as follows: In each iteration of its algorithm, a method block requests a variables-
to-responses mapping from its model, which the model fulfills through an interface. While most Dakota analyses satisfy this
relationship, where a single method runs a single model, advanced cases are possible and are discussed in Chapter 14.

As a concrete example, a simple Dakota input file, rosen_multidim. in, is shown in Figure 2.4 for a two-dimensional
parameter study on Rosenbrock’s function. This input file will be used to describe the basic format and syntax used in all
Dakota input files. The results are shown later, in Section 2.3.2.

The first block of the input file shown in Figure 2.4 is the environment block. This keyword block is used to specify the
general Dakota settings such as Dakota’s graphical output (via the graphics flag) and the tabular data output (via the
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{Writing new restart file dakota.rst
methodName = multidim_parameter_study
gradientType = none
hessianType = none

>>>>> Running multidim_parameter_study iterator.

Multidimensional parameter study for variable partitions of

Parameters for function evaluation 1:
-2.0000000000e+00 x1
-2.0000000000e+00 x2

Direct function: invoking rosenbrock

Active response data for function evaluation 1:
Active set vector = { 1 }
3.6090000000e+03 response_fn_1

<<<<< Function evaluation summary: 81 total (8l new, 0 duplicate)

Simple Correlation Matrix among all inputs and outputs:
x1 x2 response_fn_1
x1 1.00000e+00
x2 1.73472e-17 1.00000e+00
response_fn_1 -3.00705e-03 -5.01176e-01 1.00000e+00

<<<<< Iterator multidim_parameter_study completed.}

Figure 2.1: Rosenbrock 2-D parameter study example: excerpt from output file

tabular_data keyword). In advanced cases, it also identifies the top_method_pointer that will control the Dakota
study. The environment block is optional, and at most one such block can appear in a Dakota input file.

The method block of the input file specifies which iterative method Dakota will employ and associated method options. The
keyword multidim parameter_study in Figure 2.4 calls for a multidimensional parameter study, while the keyword
partitions specifies the number of intervals per variable (a method option). In this case, there will be eight intervals (nine
data points) evaluated between the lower and upper bounds of both variables (bounds provided subsequently in the variables
section), for a total of 81 response function evaluations. At least one method block is required, and multiple blocks may appear
in Dakota input files for advanced studies.

The model block of the input file specifies the model that Dakota will use. A model provides the logical unit for determining
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$eval_id interface x1 x2 response_fn_1
1 NO_1ID -2 -2 3609
2 NO_1ID -1.5 -2 1812.5
3 NO_1ID -1 -2 904
4 NO_1ID -0.5 -2 508.5

Figure 2.2: Rosenbrock 2-D parameter study example: excerpt from tabular data file

/ Environment \

Figure 2.3: Relationship between the six blocks, for a simple study.

how a set of variables is mapped through an interface into a set of responses when needed by an iterative method. In the
default case, the model allows one to specify a single set of variables, interface, and responses. The model block is optional in
this simple case. Alternatively, it can be explicitly defined as in Figure 2.4, where the keyword single specifies the use of
a single model in the parameter study. If one wishes to perform more sophisticated studies such as surrogate-based analysis
or optimization under uncertainty, the logical organization specified in the model block becomes critical in informing Dakota
on how to manage the different components of such studies, and multiple model blocks are likely needed. See Chapter 8 for
relevant advanced model specification details.

The variables block of the input file specifies the number, type, and characteristics of the parameters that will be varied
by Dakota. The variables can be classified as design variables, uncertain variables, or state variables. Design variables are
typically used in optimization and calibration, uncertain variables are used in UQ and sensitivity studies, and state variables are
usually fixed. In all three cases, variables can be continuous or discrete, with discrete having real, integer, and string subtypes.
See Chapter 9 for more information on the types of variables supported by Dakota. The variables section shown in Figure 2.4
specifies that there are two continuous design variables. The sub-specifications for continuous design variables provide the
descriptors “x1” and “x2” as well as lower and upper bounds for these variables. The information about the variables is
organized in column format for readability. So, both variables x1 and z2 have a lower bound of -2.0 and an upper bound of
2.0. At least one variables block is required, and multiple blocks may appear in Dakota input files for advanced studies.

The interface block of the input file specifies the simulation code that will be used to map variables into responses as well
as details on how Dakota will pass data to and from that code. In this example, the keyword direct is used to indicate
the use of a function linked directly into Dakota, and data is passed directly between the two. The name of the function is
identified by the analysis_driver keyword. Alternatively, fork or system executions can be used to invoke instances
of a simulation code that is external to Dakota as explained in Section 2.3.5.2 and Chapter 16. In this case, data is passed
between Dakota and the simulation via text files. At least one interface block is required, and multiple blocks may appear in
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# Dakota Input File: rosen_multidim.in
# Usage:
# dakota —-i rosen_multidim.in -o rosen_multidim.out > rosen_multidim.stdout

environment
tabular_data
tabular_data_file = 'rosen_multidim.dat’

method
multidim_parameter_study
partitions = 8 8

model
single

variables
continuous_design = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"

interface
analysis_drivers = ’'rosenbrock’
direct

responses
response_functions = 1
no_gradients
no_hessians

Figure 2.4: Rosenbrock 2-D parameter study example: the Dakota input file.

Dakota input files for advanced studies.

The responses block of the input file specifies the types of data that the interface will return to Dakota. They are categorized
primarily according to usage. Objective functions are used in optimization, calibration terms in calibration, and response
functions in sensitivity analysis and UQ. For the example shown in Figure 2.4, the assignment response_functions =
1 indicates that there is only one response function. The responses block can include additional information returned by the
interface. That includes constraints and derivative information, both discussed in Chapter 11. In this example, there are no
constraints associated with Rosenbrock’s function, so the keywords for constraint specifications are omitted. The keywords
no_gradients and no_hessians indicate that no derivatives will be provided to the method; none are needed for a
parameter study. At least one responses block is required, and multiple blocks may appear in Dakota input files for advanced
studies.

We close this section with a list of rules regarding the formatting of the Dakota input file.

e “Flat” text only.

* Whitespace is ignored.

* Comments begin with # and continue to the end of the line.

» Keyword order is largely unimportant as long as major sections are respected and there is no ambiguity.

* Equal signs are optional.
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 Strings can be surrounded by single or double quotes (but not “fancy” quotes).

¢ Scientific notation is fine.

Please see the Dakota Reference Manual [3] for additional details on this input file syntax.

2.3 Examples

This section serves to familiarize users with how to perform parameter studies, optimization, and uncertainty quantification
through their common Dakota interface. The initial examples utilize simple built in driver functions; later we show how to
utilize Dakota to drive the evaluation of user supplied black box code. The examples presented in this chapter are intended to
show the simplest use of Dakota for methods of each type. More advanced examples of using Dakota for specific purposes are
provided in subsequent, topic-based, chapters.

2.3.1 Rosenbrock Test Problem

The examples shown later in this chapter use the Rosenbrock function [119] (also described in [58], among other places),
which has the form:

f(z1,z9) = 100(ze — 23)% + (1 — 21)? 2.1

A three-dimensional plot of this function is shown in Figure 2.5(a), where both x; and z2 range in value from —2 to 2.
Figure 2.5(b) shows a contour plot for Rosenbrock’s function. An optimization problem using Rosenbrock’s function is
formulated as follows:

minimize flx1,x2)
x e ®?
subject to —2<x <2 2.2)
—2<x2<2

Note that there are no linear or nonlinear constraints in this formulation, so this is a bound constrained optimization problem.
The unique solution to this problem lies at the point (z1,z2) = (1, 1), where the function value is zero.

Several other test problems are available. See Chapter 20 for a description of these test problems as well as further discussion
of the Rosenbrock test problem.

2.3.2 Two-Dimensional Grid Parameter Study

Parameter study methods in the Dakota toolkit involve the computation of response data sets at a selection of points in the
parameter space. These response data sets are not linked to any specific interpretation, so they may consist of any allowable
specification from the responses keyword block, i.e., objective and constraint functions, least squares terms and constraints, or
generic response functions. This allows the use of parameter studies in direct coordination with optimization, least squares,
and uncertainty quantification studies without significant modification to the input file.

An example of a parameter study is the 2-D parameter study example problem listed in Figure 2.4. This is executed by Dakota
using the command noted in the comments:

dakota —-i rosen_multidim.in -o rosen_multidim.out > rosen_multidim.stdout
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rosenbrock

Figure 2.5: Rosenbrock’s function: (a) 3-D plot and (b) contours with x; on the bottom axis.

The output of the Dakota run is written to the file named rosen_multidim. out while the screen output, or standard output,
is redirect to rosen_multidim.stdout. For comparison, files named rosen_multidim.out.sav and rosen_
multidim.stdout.sav are included in the dakota/share/dakota/examples/users directory. As for many of
the examples, Dakota provides a report on the best design point located during the study at the end of these output files.

This 2-D parameter study produces the grid of data samples shown in Figure 2.6. In general, a multidimensional parameter
study lets one generate a grid in multiple dimensions. The keyword multidim parameter_study indicates that a grid
will be generated over all variables. The keyword partitions indicates the number of grid partitions in each dimension.
For this example, the number of the grid partitions are the same in each dimension (8 partitions) but it would be possible to
specify (partitions = 8 2), and have only two partitions over the second input variable. Note that the graphics flag in the
environment block of the input file could be commented out since, for this example, the iteration history plots created by Dakota
are not particularly instructive. More interesting visualizations can be created by using the Dakota graphical user interface,
or by importing Dakota’s tabular data into an external graphics/plotting package. Example graphics and plotting packages
include Mathematica, Matlab, Microsoft Excel, Origin, Tecplot, Gnuplot, and Matplotlib. (Sandia National Laboratories and
the Dakota developers do not endorse any of these commercial products.)

2.3.3 Gradient-based Unconstrained Optimization

Dakota’s optimization capabilities include a variety of gradient-based and nongradient-based optimization methods. This
subsection demonstrates the use of one such method through the Dakota interface.

A Dakota input file for a gradient-based optimization of Rosenbrock’s function is listed in Figure 2.7. The format of the input
file is similar to that used for the parameter studies, but there are some new keywords in the responses and method sections.
First, in the responses block of the input file, the keyword block starting with numerical_gradients specifies that a finite
difference method will be used to compute gradients for the optimization algorithm. Note that the Rosenbrock function evalu-
ation code inside Dakota has the ability to give analytical gradient values. (To switch from finite difference gradient estimates
to analytic gradients, uncomment the analytic_gradients keyword and comment out the four lines associated with the
numerical_gradients specification.) Next, in the method block of the input file, several new keywords have been added.
In this block, the keyword conmin_frcg indicates the use of the Fletcher-Reeves conjugate gradient algorithm in the CON-
MIN optimization software package [143] for bound-constrained optimization. The keyword max_iterations is used to
indicate the computational budget for this optimization (in this case, a single iteration includes multiple evaluations of Rosen-
brock’s function for the gradient computation steps and the line search steps). The keyword convergence_tolerance
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Figure 2.6: Rosenbrock 2-D parameter study example: location of the design points (dots) evaluated.

is used to specify one of CONMIN’s convergence criteria (under which CONMIN terminates if the objective function value
differs by less than the absolute value of the convergence tolerance for three successive iterations).

The Dakota command is noted in the file, and copies of the outputs are in the dakota/share/dakota/examples/
users directory, with .sav appended to the name. When this example problem is executed using Dakota’s legacy X
Windows-based graphics support enabled, Dakota creates some iteration history graphics similar to the screen capture shown
in Figure 2.8(a). These plots show how the objective function and design parameters change in value during the optimization
steps. The scaling of the horizontal and vertical axes can be changed by moving the scroll knobs on each plot. Also, the
“Options” button allows the user to plot the vertical axes using a logarithmic scale. Note that log-scaling is only allowed if the
values on the vertical axis are strictly greater than zero. Similar plots can also be created in Dakota’s graphical user interface.

Figure 2.8(b) shows the iteration history of the optimization algorithm. The optimization starts at the point (z1,z2) =
(—1.2,1.0) as given in the Dakota input file. Subsequent iterations follow the banana-shaped valley that curves around toward
the minimum point at (z1,z2) = (1.0, 1.0). Note that the function evaluations associated with the line search phase of each
CONMIN iteration are not shown on the plot. At the end of the Dakota run, information is written to the output file to provide
data on the optimal design point. These data include the optimum design point parameter values, the optimum objective and
constraint function values (if any), plus the number of function evaluations that occurred and the amount of time that elapsed
during the optimization study.

2.3.4 Uncertainty Quantification with Monte Carlo Sampling

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics of interest.
These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible variabilities inherent in
nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack of knowledge. Since sufficient data
is generally available for aleatory uncertainties, probabilistic methods are commonly used for computing response distribution
statistics based on input probability distribution specifications. Conversely, for epistemic uncertainties, data is generally sparse,
making the use of probability theory questionable and leading to nonprobabilistic methods based on interval specifications.

The subsection demonstrates the use of Monte Carlo random sampling for Uncertainty Quantification.

Figure 2.9 shows the Dakota input file for an example problem that demonstrates some of the random sampling capabilities
available in Dakota. In this example, the design parameters, x1 and x2, will be treated as uncertain parameters that have
uniform distributions over the interval [-2, 2]. This is specified in the variables block of the input file, beginning with the
keyword uniform_uncertain. Another difference from earlier input files such as Figure 2.7 occurs in the responses
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# Dakota Input File: rosen_grad_opt.in
# Usage:
# dakota —-i rosen_grad_opt.in -o rosen_grad_opt.out > rosen_grad_opt.stdout

environment
tabular_data
tabular_data_file = 'rosen_grad_opt.dat’

method
conmin_frcg
convergence_tolerance = le—-4
max_iterations = 100

model
single

variables
continuous_design = 2
initial_ point -1.2 1.0
lower_bounds 2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"

interface
analysis_drivers = ’rosenbrock’
direct

responses
objective_functions = 1
# analytic_gradients
numerical_gradients
method_source dakota
interval_type forward
fd_step_size = 1l.e-5
no_hessians

Figure 2.7: Rosenbrock gradient-based unconstrained optimization example: the Dakota input file.
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Figure 2.8: Rosenbrock gradient-based unconstrained optimization example: (a) screen capture of the legacy
Dakota X Windows-based graphics and (b) sequence of design points (dots) evaluated (line search points omitted).

block, where the keyword response_functions is used in place of objective_functions. The final changes to the
input file occur in the method block, where the keyword sampling is used.

The other keywords in the methods block of the input file specify the number of samples (200), the seed for the random number
generator (17), the sampling method (random), and the response threshold (100.0). The seed specification allows a user to
obtain repeatable results from multiple runs. If a seed value is not specified, then Dakota’s sampling methods are designed to
generate nonrepeatable behavior (by initializing the seed using a system clock). The keyword response_levels allows
the user to specify threshold values for which Dakota will output statistics on the response function output. Note that a unique
threshold value can be specified for each response function.

In this example, Dakota will select 200 design points from within the parameter space, evaluate the value of Rosenbrock’s
function at all 200 points, and then perform some basic statistical calculations on the 200 response values.

The Dakota command is noted in the file, and copies of the outputs are in the dakota/share/dakota/examples/
users directory, with . sav appended to the name. Figure 2.10 shows example results from this sampling method. Note that
your results will differ from those in this file if your seed value differs or if no seed is specified.
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In addition to the output files discussed in the previous examples, several LHS * . out files are generated. They are a byproduct
of a software package, LHS [136], that Dakota utilizes to generate random samples and can be ignored.

As shown in Figure 2.10, the statistical data on the 200 Monte Carlo samples is printed at the end of the output file in the section
that starts with “Statistics based on 200 samples.” In this section summarizing moment-based statistics, Dakota outputs the
mean, standard deviation, skewness, and kurtosis estimates for each of the response functions. For example, the mean of the
Rosenbrock function given uniform input uncertainties on the input variables is 455.4 and the standard deviation is 536.8.
This is a very large standard deviation, due to the fact that the Rosenbrock function varies by three orders of magnitude over
the input domain. The skewness is positive, meaning this is a right-tailed distribution, not a symmetric distribution. Finally,
the kurtosis (a measure of the “peakedness” of the distribution) indicates that this is a strongly peaked distribution (note that
we use a central, standardized kurtosis so that the kurtosis of a normal is zero). After the moment-related statistics, the 95%
confidence intervals on the mean and standard deviations are printed. This is followed by the fractions (“Probability Level”)
of the response function values that are below the response threshold values specified in the input file. For example, 34 percent
of the sample inputs resulted in a Rosenbrock function value that was less than or equal to 100, as shown in the line listing
the cumulative distribution function values. Finally, there are several correlation matrices printed at the end, showing simple
and partial raw and rank correlation matrices. Correlations provide an indication of the strength of a monotonic relationship
between input and outputs. More detail on correlation coefficients and their interpretation can be found in Section 5.2.1. More
detail about sampling methods in general can be found in Section 5.2. Finally, Figure 2.11 shows the locations of the 200
sample sites within the parameter space of the Rosenbrock function for this example.

2.3.5 User Supplied Simulation Code Examples

This subsection provides examples of how to use Dakota to drive user supplied black box code.

2.3.5.1 Optimization with a User-Supplied Simulation Code - Case 1

Many of the previous examples made use of the direct interface to access the Rosenbrock and textbook test functions that
are compiled into Dakota. In engineering applications, it is much more common to use the fork interface approach within
Dakota to manage external simulation codes. In both of these cases, the communication between Dakota and the external
code is conducted through the reading and writing of short text files. For this example, the C++ program rosenbrock . cpp
in dakota_source/test is used as the simulation code. This file is compiled to create the stand-alone rosenbrock
executable that is referenced as the analysis_driver in Figure 2.12. This stand-alone program performs the same function
evaluations as Dakota’s internal Rosenbrock test function.

Figure 2.12 shows the text of the Dakota input file named rosen_syscall. in that is provided in the directory dakota/
share/dakota/examples/users. The only differences between this input file and the one in Figure 2.7 occur in the
interface keyword section. The keyword fork indicates that Dakota will use fork calls to create separate Unix processes for
executions of the user-supplied simulation code. The name of the simulation code, and the names for Dakota’s parameters and
results file are specified using the analysis_driver, parameters_file, and results_file keywords, respectively.

The Dakota command is noted in the file, and copies of the outputs are in the dakota/share/dakota/examples/
users directory, with . sav appended to the name.

This run of Dakota takes longer to complete than the previous gradient-based optimization example since the fork interface
method has additional process creation and file I/O overhead, as compared to the internal communication that occurs when the
direct interface method is used.

To gain a better understanding of what exactly Dakota is doing with the fork interface approach, add the keywords file_tag
and file_save to the interface specification and re-run Dakota. Check the listing of the local directory and you will see
many new files with names such as params.in.1l, params.in.2,etc, and results.out.1l, results.out.2, etc.
There is one params.in.X file and one results.out .X file for each of the function evaluations performed by Dakota.
This is the file listing for params.in. 1:

2 variables
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# Dakota Input File: rosen_sampling.in
# Usage:
# dakota —-i rosen_sampling.in -o rosen_sampling.out > rosen_sampling.stdout

environment
tabular_data
tabular_data_file = 'rosen_sampling.dat’

method
sampling
sample_type random
samples = 200

seed = 17
response_levels = 100.0
model
single
variables
uniform_uncertain = 2
lower_bounds -2.0 =2.0
upper_bounds 2.0 2.0
descriptors rx1r rx2!
interface
analysis_drivers = ’'rosenbrock’
direct
responses
response_functions = 1

no_gradients
no_hessians

Figure 2.9: Monte Carlo sampling example: the Dakota input file.

-1.200000000000000e+00 =x1
1.000000000000000e+00 x2
1 functions

1 ASV_1:0bj_fn

2 derivative_variables
1 DVV_1:x1

2 DVV_2:x2

0

analysis_components

The basic pattern is that of array lengths and string identifiers followed by listings of the array entries, where the arrays consist
of the variables, the active set vector (ASV), the derivative values vector (DVV), and the analysis components (AC). For the
variables array, the first line gives the total number of variables (2) and the “variables” string identifier, and the subsequent
two lines provide the array listing for the two variable values (-1.2 and 1.0) and descriptor tags (“x1” and “x2” from the
Dakota input file). The next array conveys the ASV, which indicates what simulator outputs are needed. The first line of
the array gives the total number of response functions (1) and the “functions” string identifier, followed by one ASV code
and descriptor tag (“ASV_1") for each function. In this case, the ASV value of 1 indicates that Dakota is requesting that the
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Statistics based on 200 samples:

Moment-based statistics for each response function:
Mean std Dev Skewness Kurtosis
response_fn_1 4.5540183516e+02 5.3682678089%e+02 1.6661798252e+00 2.7925726822e+00

95% confidence intervals for each response function:
LowerCI_Mean UpperCI_Mean LowerCI_StdDev UpperCI_StdDev
response_fn_1 3.8054757609e+02 5.3025609422e+02 4.8886795789%e+02 5.9530059589e+02

Level mappings for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index General Rel Index

1.0000000000e+02 3.4000000000e-01

Probability Density Function (PDF) histograms for each response function:
PDF for response_fn_1:
Bin Lower Bin Upper Density Value
1.1623549854e-01 1.0000000000e+02 3.4039566059e-03
1.0000000000e+02 2.7101710856e+03 2.5285698843e-04

Simple Correlation Matrix among all inputs and outputs:
x1 x2 response_fn_1
x1 1.00000e+00
x2 -5.85097e-03 1.00000e+00
response_fn_1 -9.57746e-02 -5.08193e-01 1.00000e+00

Partial Correlation Matrix between input and output:
response_fn_1
x1l -1.1465%9e-01
x2 =5.11111e-01

Simple Rank Correlation Matrix among all inputs and outputs:
x1 x2 response_fn_1
x1 1.00000e+00
x2 —6.03315e-03 1.00000e+00
response_fn_1 -1.15360e-01 -5.04661e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fn_1
x1 -1.37154e-01
x2 -5.08762e-01

Figure 2.10: Results of Monte Carlo Sampling on the Rosenbrock Function
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X1

Figure 2.11: Monte Carlo sampling example: locations in the parameter space of the 200 Monte Carlo samples
using a uniform distribution for both 21 and x».

simulation code return the response function value in the file results.out . X. (Possible ASV values: 1 = value of response
function value, 2 = response function gradient, 4 = response function Hessian, and any sum of these for combinations up to 7
= response function value, gradient, and Hessian; see 9.7 for more detail.) The next array provides the DVV, which defines
the variable identifiers used in computing derivatives. The first line of the array gives the number of derivative variables (2)
and the “derivative_variables” string identifier, followed by the listing of the two DVV variable identifiers (the first and second
variables) and descriptor tags (“DVV_1" and “DVV_2”). The final array provides the AC array used to provide additional
strings for use by the simulator (e.g., to provide the name of a particular mesh file). The first line of the array gives the total
number of analysis components (0) and the “analysis_components” string identifier, followed by the listing of the array, which
is empty in this case.

The executable program rosenbrock reads in the params. in.X file and evaluates the objective function at the given values
for x1 and x2. Then, rosenbrock writes out the objective function data to the results.out.X file. Here is the listing for
the file results.out.1:

2.420000000000000e+01 £

The value shown above is the value of the objective function, and the descriptor ‘f” is an optional tag returned by the simulation
code. When the fork call has completed, Dakota reads in the data from the results.in.X file and processes the results.
Dakota then continues with additional executions of the rosenbrock program until the optimization process is complete.

2.3.5.2 Optimization with a User-Supplied Simulation Code - Case 2

In many situations the user-supplied simulation code cannot be modified to read and write the params.in.Xfile and the
results.out.X file, as described above. Typically, this occurs when the simulation code is a commercial or proprietary
software product that has specific input file and output file formats. In such cases, it is common to replace the executable
program name in the Dakota input file with the name of a Unix shell script containing a sequence of commands that read and
write the necessary files and run the simulation code. For example, the executable program named rosenbrock listed in
Figure 2.12 could be replaced by a Unix Bourne or C-shell script named simulator_script, with the script containing a
sequence of commands to perform the following steps: insert the data from the parameters. in.X file into the input file of
the simulation code, execute the simulation code, post-process the files generated by the simulation code to compute response
data, and return the response data to Dakota in the results.out .X file. The steps that are typically used in constructing
and using a Unix shell script are described in Section 10.3.
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2.4 Dakota Command-Line Options

The Dakota executable file is named dakota (dakota.exe on Windows). If this command is entered at the command
prompt without any arguments, a usage message similar to the following appears:

usage: dakota [options and <args>]

~help (Print this summary)

-version (Print DAKOTA version number)

—input <$val> (REQUIRED DAKOTA input file $val)

-preproc [$val] (Pre-process input file with pyprepro or tool $val)
—output <$val> (Redirect DAKOTA standard output to file $val)

# Dakota Input File: rosen_syscall.in
# Usage:
# dakota —-i rosen_syscall.in -o rosen_syscall.out > rosen_syscall.stdout
environment
tabular_data
tabular_data_file = 'rosen_syscall.dat’
method
conmin_frcg
convergence_tolerance = le-4
max_iterations = 100
model
single
variables
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
interface
analysis_drivers = ’rosenbrock’
fork
parameters_file = ’'params.in’
results_file = ’'results.out’
responses
objective_functions = 1
numerical_gradients
method_source dakota
interval_type forward
fd_step_size = 1l.e-5
no_hessians

Figure 2.12: Dakota input file for gradient-based optimization using the fork call interface to an external rosen-
brock simulator.
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—error <$val> (Redirect DAKOTA standard error to file $val)

-parser <$val> (Parsing technology: nidr[strict] [:dumpfile])
-no_input_echo (Do not echo DAKOTA input file)

—check (Perform input checks)

-pre_run [$val] (Perform pre-run (variables generation) phase)

—-run [$val] (Perform run (model evaluation) phase)

-post_run [$val] (Perform post-run (final results) phase)
-read_restart [$val] (Read an existing DAKOTA restart file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart [$val] (Write a new DAKOTA restart file S$val)

Of these available command line inputs, only the “~input” option is required, and “~input” can be omitted if the input
file name is the final item on the command line; all other command-line inputs are optional. The “~help” option prints the
usage message above. The “~version” option prints the version number of the executable. The “~check” option invokes
a dry-run mode in which the input file is processed and checked for errors, but the study is not performed. The “~input”
option provides the name of the Dakota input file, which can optionally be pre-processed as a template using the “~preproc”
option.

The “~output” and “~error” options provide file names for redirection of the Dakota standard output (stdout) and standard
error (stderr), respectively. By default, Dakota will echo the input file to the output stream, but “-no_input_echo” can
override this behavior.

The “~parser” inputis for debugging and will not be further described here. The “~read_restart”and “~write_restart”
options provide the names of restart databases to read from and write to, respectively. The “~stop_restart” option limits

the number of function evaluations read from the restart database (the default is all the evaluations) for those cases in which
some evaluations were erroneous or corrupted. Restart management is an important technique for retaining data from expen-

sive engineering applications. This advanced topic is discussed in detail in Chapter 18. Note that these command line options

can be abbreviated so long as the abbreviation is unique. Accordingly, the following are valid, unambiguous specifications:
“—h”, “=v”, “=c”, “=17, “=0”, “=e”, “~
the command line options.

ELIT3

re”,

”  «

s”, “—w”, “~ru”, and “~po” and can be used in place of the longer forms of

To run Dakota with a particular input file, the following syntax can be used:
dakota -i dakota.in

or more simply
dakota dakota.in

This will echo the standard output (stdout) and standard error (stderr) messages to the terminal. To redirect stdout and stderr
to separate files, the —o and —e command line options may be used:

dakota -i dakota.in -o dakota.out -e dakota.err

or
dakota -o dakota.out -e dakota.err dakota.in

Alternatively, any of a variety of Unix redirection variants can be used. The simplest of these redirects stdout to another file:
dakota dakota.in > dakota.out

To run the dakota process in the background, append an ampersand symbol (&) to the command with an embedded space, e.g.,

Dakota Version 6.15 User’s Manual generated on November 10, 2021



42 CHAPTER 2. DAKOTA TUTORIAL

dakota dakota.in > dakota.out &

Refer to [5] for more information on Unix redirection and background commands.

The specified Dakota input file may instead be an dprepro/aprepro-style template file to be pre-processed prior to running
Dakota. For example it might contain template expressions in curly braces:

# {MyLB = 2.0} {MyUB = 8.6}
variables
uniform_uncertain 3
upper_bounds {MyUB} {MyUB} {MyUB}
lower_bounds {MyLB} {MyLB} {MyLB}

(See Section 10.9 for more information and use cases.) To pre-process the input file, specify the —-preproc flag which gen-
erates an intermediate temporary input file for use in Dakota. If Dakota’s pyprepro.py utility is not available on the execution
PATH and/or additional pre-processing options are needed, the tool location and syntax can be specified, for example:

# Assumes pyprepro.py is on PATH:
dakota -i dakota_rosen.tmpl -preproc

# Specify path/name of pre-processor:
dakota -i dakota_rosen.tmpl \
-preproc "/home/user/dakota/bin/pyprepro"

# Specify Python interpreter to use, for example on Windows
dakota —-i dakota_rosen.tmpl —-preproc "C:/python27/python.exe \
C:/dakota/6.10/bin/pyprepro/pyprepro.py"

# Specify additional options to pyprepro, e.g., include file:
dakota -1 dakota_rosen.tmpl —-preproc "pyprepro.py -I default.params"

3

The “~pre_run”, “~run”, and “~post_run” options instruct Dakota to run one or more execution phases, excluding others.
For example pre-run might generate variable sets, run (core run) might invoke the simulation to evaluate variables and produce
responses, and post-run might accept variable/response sets and analyzes the results (for example, calculate correlations from
a set of samples). Currently only two modes are supported and only for sampling, parameter study, and DACE methods: (1)
pre-run only with optional tabular output of variables:

dakota —-i dakota.in -pre_run [::myvariables.dat]
and (2) post-run only with required tabular input of variables/responses:

dakota —-i dakota.in -post_run myvarsresponses.dat::

2.5 Next Steps

After reading this chapter, you should understand the mechanics of acquiring, installing, and executing Dakota to perform
simple studies. You should have a high-level appreciation for what inputs Dakota requires, how it behaves during interfacing
and operation for a few kinds of studies, and what representative output is obtained. To effectively use Dakota, you will need
to understand the character of your problem, select a Dakota method to help you meet your analysis goals, and develop an
interface to your computational model.

Dakota Version 6.15 User’s Manual generated on November 10, 2021



2.5. NEXT STEPS 43

2.5.1 Problem Exploration and Method Selection

Section 1.2 provides a high-level overview of the analysis techniques available in Dakota, with references to more details and
usage guidelines in the following chapters. Selecting an appropriate method to meet your analysis goals requires understand-
ing problem characteristics. For example, in optimization, typical questions that should be addressed include: Are the design
variables continuous, discrete, or mixed? Is the problem constrained or unconstrained? How expensive are the response func-
tions to evaluate? Will the response functions behave smoothly as the design variables change or will there be nonsmoothness
and/or discontinuities? Are the response functions likely to be multimodal, such that global optimization may be warranted?
Is analytic gradient data available, and if not, can gradients be calculated accurately and cheaply? Questions pertinent for
uncertainty quantification may include: Can I accurately model the probabilistic distributions of my uncertain variables? Are
the response functions relatively linear? Am I interested in a full random process characterization of the response functions,
or just statistical results?

If there is not sufficient information from the problem description and prior knowledge to answer these questions, then ad-
ditional problem characterization activities may be warranted. Dakota parameter studies and design of experiments methods
can help answer these questions by systematically interrogating the model. The resulting trends in the response functions can
be evaluated to determine if these trends are noisy or smooth, unimodal or multimodal, relatively linear or highly nonlinear,
etc. In addition, the parameter studies may reveal that one or more of the parameters do not significantly affect the results
and can be omitted from the problem formulation. This can yield a potentially large savings in computational expense for
the subsequent studies. Refer to Chapters 3 and 4 for additional information on parameter studies and design of experiments
methods.

For a list of all the example Dakota input files, see Table 2.1. All of these input files can be found in dakota/share/
dakota/examples/users.

2.5.2 Key Getting Started References

The following references address many of the most common questions raised by new Dakota users:

* Dakota documentation and training materials are available from the Dakota website http://dakota.sandia.
gov.

» Dakota input file syntax (valid keywords and settings) is described in the Dakota Reference Manual [3].

* Example input files are included throughout this manual, and are included in Dakota distributions and installations. See
Section 1.5 for help finding these files.

¢ Detailed method descriptions appear in the Method Tour in Chapters 3 through 7.

* Building an interface to a simulation code: Section 10.3, and related information on parameters file formats (Section 9.6)
and results file format (Section 11.2).

* Chapter 13 describes the different Dakota output file formats, including commonly encountered error messages.
» Chapter 18 describes the file restart and data re-use capabilities of Dakota.

* Documentation for getting started with the Dakota Graphical User Interface may be found here: http://dakota.
sandia.gov/content/latest-gui-manual.

* Dakota’s Examples Library, which includes runnable Dakota studies, drivers, case studies, tutorials, and more is avail-
able in Dakota packages in the dakota/share/dakota/examples/official folder.
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Table 2.1: List of Example Input Files

advanced models

sampling on a surrogate model

textbook_uq_surrogate.in

Method Category Specific Method Input File Name Reference
parameter study multidimensional parameter study rosen_multidim.in 24
parameter study vector parameter study rosen_ps_vector.in 3.3

design of comp exp moat (Morris) morris_ps_moat.in 20.22

uncertainty quantification random sampling rosen_sampling.in 29
uncertainty quantification LHS sampling textbook_uq_sampling.in 5.2
uncertainty quantification polynomial chaos expansion rosen_uq-pce.in 5.14
uncertainty quantification stochastic collocation rosen_ug-sc.in 5.17
uncertainty quantification reliability Mean Value textbook _uq_meanvalue.in 5.8
uncertainty quantification reliability FORM logratio_uq_reliability.in 5.10
uncertainty quantification global interval analysis cantilever_uq-global_interval.in 5.20
uncertainty quantification global evidence analysis textbook_uq_glob_evidence.in 5.23
optimization gradient-based, unconstrained rosen_grad_opt.in 2.7
optimization gradient-based, unconstrained rosen_syscall.in 2.12
optimization gradient-based, constrained textbook_opt_conmin.in 20.2
optimization gradient-based, constrained cantilever_opt_npsol.in 20.16
optimization gradient-based, constrained container_opt_npsol.in 13.1
optimization evolutionary algorithm rosen_opt_ea.in 6.3
optimization pattern search rosen_opt_patternsearch.in 6.1
optimization efficient global optimization (EGO) rosen_opt_ego.in 6.5
optimization efficient global optimization (EGO) herbie_shubert_opt_ego.in 20.7
optimization multiobjective textbook_opt_multiobj1.in 6.6
optimization Pareto opt., moga mogatest].in 6.8
optimization Pareto opt., moga mogatest2.in 20.17
optimization Pareto opt., moga mogatest3.in 20.19
optimization optimization with scaling rosen_opt_scaled.in 6.10
calibration nonlinear least squares rosen_opt_nls.in 20.4
calibration NLS with datafile textbook_nls_datafile.in

advanced methods hybrid minimization textbook_hybrid_strat.in 14.1

advanced methods Pareto minimization textbook_pareto_strat.in 14.4

advanced methods multistart minimization gsf_multistart_strat.in 14.2

advanced methods surrogate based global mogatest] _opt_sbo.in 14.10

advanced methods surrogate based local rosen_opt_sbo.in 14.8
advanced models opt. under uncertainty (OUU) textbook_opt_ouul.in 15.5
advanced models second order probability cantilever_uq_sop_rel.in 15.2
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Chapter 3

Parameter Study Capabilities

3.1 Overview

Dakota parameter studies explore the effect of parametric changes within simulation models by computing response data sets
at a selection of points in the parameter space, yielding one type of sensitivity analysis. (For a comparison with DACE-based
sensitivity analysis, see Section 4.6.) The selection of points is deterministic and structured, or user-specified, in each of the
four available parameter study methods:

¢ Vector: Performs a parameter study along a line between any two points in an n-dimensional parameter space, where
the user specifies the number of steps used in the study.

o List: The user supplies a list of points in an n-dimensional space where Dakota will evaluate response data from the
simulation code.

¢ Centered: Given a point in an n-dimensional parameter space, this method evaluates nearby points along the coordinate
axes of the parameter space. The user selects the number of steps and the step size.

¢ Multidimensional: Forms a regular lattice or hypergrid in an n-dimensional parameter space, where the user specifies
the number of intervals used for each parameter.

More detail on these parameter studies is found in Sections 3.2 through 3.5 below.

When used in parameter studies, the response data sets are not linked to any specific interpretation, so they may consist of
any allowable specification from the responses keyword block, i.e., objective and constraint functions, least squares terms
and constraints, or generic response functions. This allows the use of parameter studies in alternation with optimization,
least squares, and uncertainty quantification studies with only minor modification to the input file. In addition, the response
data sets may include gradients and Hessians of the response functions, which will be catalogued by the parameter study.
This allows for several different approaches to “sensitivity analysis”: (1) the variation of function values over parameter
ranges provides a global assessment as to the sensitivity of the functions to the parameters, (2) derivative information can
be computed numerically, provided analytically by the simulator, or both (mixed gradients) in directly determining local
sensitivity information at a point in parameter space, and (3) the global and local assessments can be combined to investigate
the variation of derivative quantities through the parameter space by computing sensitivity information at multiple points.

In addition to sensitivity analysis applications, parameter studies can be used for investigating nonsmoothness in simulation
response variations (so that models can be refined or finite difference step sizes can be selected for computing numerical
gradients), interrogating problem areas in the parameter space, or performing simulation code verification (verifying simulation
robustness) through parameter ranges of interest. A parameter study can also be used in coordination with minimization
methods as either a pre-processor (to identify a good starting point) or a post-processor (for post-optimality analysis).

Parameter study methods will iterate any combination of design, uncertain, and state variables defined over continuous and
discrete domains into any set of responses (any function, gradient, and Hessian definition). Parameter studies draw no distinc-
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tion among the different types of continuous variables (design, uncertain, or state) or among the different types of response
functions. They simply pass all of the variables defined in the variables specification into the interface, from which they expect
to retrieve all of the responses defined in the responses specification. As described in Section 11.3, when gradient and/or Hes-
sian information is being catalogued in the parameter study, it is assumed that derivative components will be computed with
respect to all of the continuous variables (continuous design, continuous uncertain, and continuous state variables) specified,
since derivatives with respect to discrete variables are assumed to be undefined. The specification of initial values or bounds
is important for parameter studies.

3.1.1 Initial Values

The vector and centered parameter studies use the initial values of the variables from the variables keyword block as the
starting point and the central point of the parameter studies, respectively. These parameter study starting values for design,
uncertain, and state variables are referenced in the following sections using the identifier “Initial Values.”

In the case of design variables, the initial_point is used, and in the case of state variables, the initial_state is
used. In the case of uncertain variables, initial values not specified by an initial_ point are inferred from the distribution
specification: all uncertain initial values are set to their means, correcting as needed. For example, mean values for bounded
normal and bounded lognormal are repaired as needed to satisfy the specified distribution bounds, mean values for discrete
integer range distributions are rounded down to the nearest integer, and mean values for discrete set distributions are rounded
to the nearest set value. See the variables,initial_point,and initial_state keywords in the Dakota Reference
Manual [3] for additional details on default values.

3.1.2 Bounds

The multidimensional parameter study uses the bounds of the variables from the variables keyword block to define the
range of parameter values to study. In the case of design and state variables, the 1lower_bounds and upper_bounds spec-
ifications are used (see the Dakota Reference Manual [3] for default values when lower_bounds or upper_bounds are
unspecified). In the case of uncertain variables, these values are either drawn or inferred from the distribution specification.
Distribution lower and upper bounds can be drawn directly from required bounds specifications for uniform, loguniform, trian-
gular, and beta distributions, as well as from optional bounds specifications for normal and lognormal. Distribution bounds are
implicitly defined for histogram bin, histogram point, and interval variables (from the extreme values within the bin/point/inter-
val specifications) as well as for binomial (0 to num_t rials) and hypergeometric (0 to min(num_drawn,num_selected))
variables. Finally, distribution bounds are inferred for normal and lognormal if optional bounds are unspecified, as well as
for exponential, gamma, gumbel, frechet, weibull, poisson, negative binomial, and geometric (which have no bounds specifi-
cations); these bounds are [0, 1 + 30] for exponential, gamma, frechet, weibull, poisson, negative binomial, geometric, and
unspecified lognormal, and [p — 30, 1 4 3o] for gumbel and unspecified normal.

3.2 Vector Parameter Study

The vector parameter study computes response data sets at selected intervals along an n-dimensional vector in parameter
space. This capability encompasses both single-coordinate parameter studies (to study the effect of a single variable on a
response set) as well as multiple coordinate vector studies (to investigate the response variations along some arbitrary vector;
e.g., to investigate a search direction failure).

Dakota’s vector parameter study includes two possible specification formulations which are used in conjunction with the Initial
Values (see Section 3.1.1) to define the vector and steps of the parameter study:

final_point (vector of reals) and num_steps (integer)
step_vector (vector of reals) and num_steps (integer)

In both of these cases, the Initial Values are used as the parameter study starting point and the specification selection above
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defines the orientation of the vector and the increments to be evaluated along the vector. In the former case, the vector from
initial to final point is partitioned by num_steps, and in the latter case, the step_vector is added num_steps times.
In the case of discrete range variables, both final_point and step_vector are specified in the actual values; and in
the case of discrete sets (integer or real), final_point is specified in the actual values but step_vector must instead
specify index offsets for the (ordered, unique) set. In all cases, the number of evaluations is num_steps+1. Two examples

are included below:

Three continuous parameters with initial values of (1.0, 1.0, 1.0), num_steps =4, and either final _point =(1.0, 2.0, 1.0)

or step_vector = (0, .25, 0):

Parameters

Parameters

Parameters

Parameters

Parameters

Two continuous parameters with initial values of (1.0, 1.0), one discrete range parameter with initial value of 5, one discrete
real set parameter with set values of (10., 12., 18., 30., 50.) and initial value of 10., num_steps =4, and either final _point

for

for

for

for

for

function

1.
1.
1.

function

1.
1.
1.

function

1.
1.
1.

function
1

function
1

evaluation 1:
0000000000e+00
0000000000e+00
0000000000e+00
evaluation 2:
0000000000e+00
2500000000e+00
0000000000e+00
evaluation 3:
0000000000e+00
5000000000e+00
0000000000e+00
evaluation 4:

.0000000000e+00
1.
1.

7500000000e+00
0000000000e+00
evaluation 5:

.0000000000e+00
2.
1.

0000000000e+00
0000000000e+00

=(2.0,1.4,13,50.) or step_vector =(.25,.1,2, 1):

Parameters

Parameters

Parameters

Parameters

for

for

for

for

function
1
1

1.

function

1.
1.

1.

function
1

1.

function

1.
1.

evaluation 1:

.0000000000e+00
.0000000000e+00

5
0000000000e+01
evaluation 2:
2500000000e+00
1000000000e+00

7
2000000000e+01
evaluation 3:

.5000000000e+00
1.

2000000000e+00
9
8000000000e+01
evaluation 4:
7500000000e+00
3000000000e+00
11

cl
c2
c3

cl
c2
c3

cl
c2
c3

cl
c2
c3

cl
c2
c3

cl
c2
dil
drl

cl
c2
dil
drl

cl
c2
dil
drl
cl

c2
dil
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3.0000000000e+01 drl
Parameters for function evaluation 5:
2.0000000000e+00 c1
1.4000000000e+00 c2
13 di1l
5.0000000000e+01 dr1l

An example using a vector parameter study is described in Section 3.7.

3.3 List Parameter Study

The list parameter study computes response data sets at selected points in parameter space. These points are explicitly specified
by the user and are not confined to lie on any line or surface. Thus, this parameter study provides a general facility that
supports the case where the desired set of points to evaluate does not fit the prescribed structure of the vector, centered, or
multidimensional parameter studies.

The user input consists of a 1ist_of_points specification which lists the requested parameter sets in succession. The list
parameter study simply performs a simulation for the first parameter set (the first n entries in the list), followed by a simulation
for the next parameter set (the next n entries), and so on, until the list of points has been exhausted. Since the Initial Values
will not be used, they need not be specified. In the case of discrete range or discrete set variables, list values are specified using
the actual values (not set indices).

An example specification that would result in the same parameter sets as in the second example in Section 3.2 would be:

list_of_points = 1.0 1.0 5 10.
1.25 1.1 7 12.
1.5 1.2 9 18.
1.75 1.3 11 30.
2.0 1.4 13 50.

For convenience, the points for evaluation in a list parameter study may instead be specified via the import_points_file
specification, e.g., import_points_file ’listpstudy.dat’, wherethe file 1istpstudy.dat may be in freeform
or annotated format 12.1.1. The ordering of the points is in input specification order, with both active and inactive variables
by default.

3.4 Centered Parameter Study

The centered parameter study executes multiple coordinate-based parameter studies, one per parameter, centered about the
specified Initial Values. This is useful for investigation of function contours in the vicinity of a specific point. For example,
after computing an optimum design, this capability could be used for post-optimality analysis in verifying that the computed
solution is actually at a minimum or constraint boundary and in investigating the shape of this minimum or constraint boundary.

This method requires step_vector (list of reals) and steps_per_variable (list of integers) specifications, where the
former specifies the size of the increments per variable (employed sequentially, not all at once as for the vector study in
Section 3.2) and the latter specifies the number of increments per variable (employed sequentially, not all at once) for each
of the positive and negative step directions. As for the vector study described in Section 3.2, step_vector includes actual
variable steps for continuous and discrete range variables, but employs index offsets for discrete set variables (integer or real).

For example, with Initial Values of (1.0, 1.0), a step_-vector of (0.1, 0.1), and a steps_per_variable of (2, 2), the
center point is evaluated followed by four function evaluations (two negative deltas and two positive deltas) per variable:

Parameters for function evaluation 1:
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Figure 3.1: Example centered parameter study.

1.0000000000e+00 di
1.0000000000e+00 d2
Parameters for function evaluation 2:
8.0000000000e-01 di1
1.0000000000e+00 d2
Parameters for function evaluation 3:
9.0000000000e-01 di1
1.0000000000e+00 d2
Parameters for function evaluation 4:
1.1000000000e+00 di
1.0000000000e+00 dz
Parameters for function evaluation 5:
1.2000000000e+00 di1
1.0000000000e+00 d2
Parameters for function evaluation 6:
1.0000000000e+00 d1
8.0000000000e-01 d2
Parameters for function evaluation 7:
1.0000000000e+00 di
9.0000000000e-01 d2
Parameters for function evaluation 8:
1.0000000000e+00 di
1.1000000000e+00 dz
Parameters for function evaluation 9:
1.0000000000e+00 di
1.2000000000e+00 dz

This set of points in parameter space is depicted in Figure 3.1.

3.5 Multidimensional Parameter Study

The multidimensional parameter study computes response data sets for an n-dimensional hypergrid of points. Each variable
is partitioned into equally spaced intervals between its upper and lower bounds (see Section 3.1.2), and each combination of
the values defined by these partitions is evaluated. As for the vector and centered studies described in Sections 3.2 and 3.4,
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d2

3 partitions

dli

2 partitions

Figure 3.2: Example multidimensional parameter study

partitioning occurs using the actual variable values for continuous and discrete range variables, but occurs within the space of
valid indices for discrete set variables (integer or real). The number of function evaluations performed in the study is:

n

H(partitionsi +1) 3.1

i=1

The partitions information is specified using the partitions specification, which provides an integer list of the number of
partitions for each variable (i.e., partitions;). Since the Initial Values will not be used, they need not be specified.

In a two variable example problem with d1 € [0,2] and d2 € [0,3] (as defined by the upper and lower bounds from the
variables specification) and with partitions = (2,3), the interval [0,2] is divided into two equal-sized partitions and the
interval [0,3] is divided into three equal-sized partitions. This two-dimensional grid, shown in Figure 3.2, would result in the
following twelve function evaluations:

Parameters for function evaluation 1:
0.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 2:
1.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 3:
2.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 4:
0.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 5:
1.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 6:
2.0000000000e+00 d1
1.0000000000e+00 d2
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Parameters for function evaluation 7:
0.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 8:
1.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 9:
2.0000000000e+00 d1
2.0000000000e+00 d2

Parameters for function evaluation 10:
0.0000000000e+00 d1
3.0000000000e+00 d2

Parameters for function evaluation 11:
1.0000000000e+00 d1
3.0000000000e+00 d2

Parameters for function evaluation 12:
2.0000000000e+00 di1
3.0000000000e+00 d2

The first example shown in this User’s Manual is a multi-dimensional parameter study. See Section 2.3.2.

3.6 Parameter Study Usage Guidelines

Parameter studies, classical design of experiments (DOE), design/analysis of computer experiments (DACE), and sampling
methods share the purpose of exploring the parameter space. Parameter Studies are recommended for simple studies with
defined, repetitive structure. A local sensitivity analysis or an assessment of the smoothness of a response function is best
addressed with a vector or centered parameter study. A multi-dimensional parameter study may be used to generate grid
points for plotting response surfaces. For guidance on DACE and sampling methods, in contrast to parameter studies, see
Section 4.7 and especially Table 4.4, which clarifies the different purposes of the method types.

3.7 Example: Vector Parameter Study with Rosenbrock

This section demonstrates a vector parameter study on the Rosenbrock test function described in Section 2.3.1. An example
of multidimensional parameter study is shown in Section 2.3.2.

A vector parameter study is a study between any two design points in an n-dimensional parameter space. An input file for
the vector parameter study is shown in Figure 3.3. The primary differences between this input file and the input file for the
multidimensional parameter study are found in the variables and method sections. In the variables section, the keywords for
the bounds are removed and replaced with the keyword initial_point that specifies the starting point for the parameter
study. In the method section, the vector_parameter_study keyword is used. The final_point keyword indicates
the stopping point for the parameter study, and num_steps specifies the number of steps taken between the initial and final
points in the parameter study.

Figure 3.4(a) shows the legacy X Windows-based graphics output created by Dakota, which can be useful for visualizing the
results. Figure 3.4(b) shows the locations of the 11 sample points generated in this study. It is evident from these figures that
the parameter study starts within the banana-shaped valley, marches up the side of the hill, and then returns to the valley.
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# Dakota Input File: rosen_ps_vector.in
environment
tabular_data
tabular_data_file

"rosen_ps_vector.dat’

method
vector_parameter_study

final_point 1.1 1.3

num_steps

10

model
single

variables

2
-0.3
rx1’

continuous_design
initial_point
descriptors

0.2
nxom

interface
analysis_drivers = ’rosenbrock’
direct

responses
objective_functions
no_gradients

1

no_hessians

Figure 3.3: Rosenbrock vector parameter study example: the Dakota input file — see dakota/share/dakota/

examples/users/rosen_ps_vector.in
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Figure 3.4: Rosenbrock vector parameter study example: (a) screen capture of the Dakota graphics and (b)
location of the design points (dots) evaluated.
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Chapter 4

Design of Experiments Capabilities

4.1 Overview

Classical design of experiments (DoE) methods and the more modern design and analysis of computer experiments (DACE)
methods are both techniques which seek to extract as much trend data from a parameter space as possible using a limited
number of sample points. Classical DoE techniques arose from technical disciplines that assumed some randomness and non-
repeatability in field experiments (e.g., agricultural yield, experimental chemistry). DoE approaches such as central composite
design, Box-Behnken design, and full and fractional factorial design generally put sample points at the extremes of the pa-
rameter space, since these designs offer more reliable trend extraction in the presence of nonrepeatability. DACE methods
are distinguished from DoE methods in that the nonrepeatability component can be omitted since computer simulations are
involved. In these cases, space filling designs such as orthogonal array sampling and Latin hypercube sampling are more
commonly employed in order to accurately extract trend information. Quasi-Monte Carlo sampling techniques which are
constructed to fill the unit hypercube with good uniformity of coverage can also be used for DACE.

Dakota supports both DoE and DACE techniques. In common usage, only parameter bounds are used in selecting the samples
within the parameter space. Thus, DoE and DACE can be viewed as special cases of the more general probabilistic sampling
for uncertainty quantification (see following section), in which the DoE/DACE parameters are treated as having uniform prob-
ability distributions. The DoE/DACE techniques are commonly used for investigation of global response trends, identification
of significant parameters (e.g., main effects), and as data generation methods for building response surface approximations.

Dakota includes several approaches sampling and design of experiments, all implemented in included third-party software
libraries. LHS (Latin hypercube sampling) [136] is a general-purpose sampling package developed at Sandia that has been
used by the DOE national labs for several decades. DDACE (distributed design and analysis for computer experiments)
is a more recent package for computer experiments developed at Sandia Labs [141]. DDACE provides the capability for
generating orthogonal arrays, Box-Behnken designs, Central Composite designs, and random designs. The FSUDace (Florida
State University’s Design and Analysis of Computer Experiments) package provides the following sampling techniques: quasi-
Monte Carlo sampling based on Halton or Hammersley sequences, and Centroidal Voronoi Tessellation. Lawrence Livermore
National Lab’s PSUADE (Problem Solving Environment for Uncertainty Analysis and Design Exploration) [140] includes
several methods for model exploration, but only the Morris screening method is exposed in Dakota.

This chapter describes DDACE, FSUDace, and PSUADE, with a focus on designing computer experiments. Latin Hypercube
Sampling, also used in uncertainty quantification, is discussed in Section 5.2.
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4.2 Design of Computer Experiments

What distinguishes design of computer experiments? Computer experiments are often different from physical experiments,
such as those performed in agriculture, manufacturing, or biology. In physical experiments, one often applies the same
treatment or factor level in an experiment several times to get an understanding of the variability of the output when that
treatment is applied. For example, in an agricultural experiment, several fields (e.g., 8) may be subject to a low level of
fertilizer and the same number of fields may be subject to a high level of fertilizer to see if the amount of fertilizer has a
significant effect on crop output. In addition, one is often interested in the variability of the output within a treatment group:
is the variability of the crop yields in the low fertilizer group much higher than that in the high fertilizer group, or not?

In physical experiments, the process we are trying to examine is stochastic: that is, the same treatment may result in different
outcomes. By contrast, in computer experiments, often we have a deterministic code. If we run the code with a particular set
of input parameters, the code will always produce the same output. There certainly are stochastic codes, but the main focus
of computer experimentation has been on deterministic codes. Thus, in computer experiments we often do not have the need
to do replicates (running the code with the exact same input parameters several times to see differences in outputs). Instead,
a major concern in computer experiments is to create an experimental design which can sample a high-dimensional space in
a representative way with a minimum number of samples. The number of factors or parameters that we wish to explore in
computer experiments is usually much higher than physical experiments. In physical experiments, one may be interested in
varying a few parameters, usually five or less, while in computer experiments we often have dozens of parameters of interest.
Choosing the levels of these parameters so that the samples adequately explore the input space is a challenging problem. There
are many experimental designs and sampling methods which address the issue of adequate and representative sample selection.

There are many goals of running a computer experiment: one may want to explore the input domain or the design space and get
a better understanding of the range in the outputs for a particular domain. Another objective is to determine which inputs have
the most influence on the output, or how changes in the inputs change the output. This is usually called sensitivity analysis.
Another goal is to use the sampled input points and their corresponding output to create a response surface approximation
for the computer code. The response surface approximation (e.g., a polynomial regression model, a Gaussian-process/Kriging
model, a neural net) can then be used to emulate the computer code. Constructing a response surface approximation is
particularly important for applications where running a computational model is extremely expensive: the computer model may
take 10 or 20 hours to run on a high performance machine, whereas the response surface model may only take a few seconds.
Thus, one often optimizes the response surface model or uses it within a framework such as surrogate-based optimization.
Response surface models are also valuable in cases where the gradient (first derivative) and/or Hessian (second derivative)
information required by optimization techniques are either not available, expensive to compute, or inaccurate because the
derivatives are poorly approximated or the function evaluation is itself noisy due to roundoff errors. Furthermore, many
optimization methods require a good initial point to ensure fast convergence or to converge to good solutions (e.g. for problems
with multiple local minima). Under these circumstances, a good design of computer experiment framework coupled with
response surface approximations can offer great advantages.

In addition to the sensitivity analysis and response surface modeling mentioned above, we also may want to do uncertainty
quantification on a computer model. Uncertainty quantification (UQ) refers to taking a particular set of distributions on the
inputs, and propagating them through the model to obtain a distribution on the outputs. For example, if input parameter A
follows a normal with mean 5 and variance 1, the computer produces a random draw from that distribution. If input parameter
B follows a weibull distribution with alpha = 0.5 and beta = 1, the computer produces a random draw from that distribution.
When all of the uncertain variables have samples drawn from their input distributions, we run the model with the sampled
values as inputs. We do this repeatedly to build up a distribution of outputs. We can then use the cumulative distribution
function of the output to ask questions such as: what is the probability that the output is greater than 10? What is the 99th
percentile of the output?

Note that sampling-based uncertainty quantification and design of computer experiments are very similar. There is significant
overlap in the purpose and methods used for UQ and for DACE. We have attempted to delineate the differences within Dakota
as follows: we use the methods DDACE, FSUDACE, and PSUADE primarily for design of experiments, where we are inter-
ested in understanding the main effects of parameters and where we want to sample over an input domain to obtain values
for constructing a response surface. We use the nondeterministic sampling methods (sampling) for uncertainty quantifica-
tion, where we are propagating specific input distributions and interested in obtaining (for example) a cumulative distribution
function on the output. If one has a problem with no distributional information, we recommend starting with a design of
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experiments approach. Note that DDACE, FSUDACE, and PSUADE currently do not support distributional information: they
take an upper and lower bound for each uncertain input variable and sample within that. The uncertainty quantification meth-
ods in sampling (primarily Latin Hypercube sampling) offer the capability to sample from many distributional types. The
distinction between UQ and DACE is somewhat arbitrary: both approaches often can yield insight about important parameters
and both can determine sample points for response surface approximations.

Three software packages are available in Dakota for design of computer experiments, DDACE (developed at Sandia Labs),
FSUDACE (developed at Florida State University), and PSUADE (LLNL).

4.3 DDACE

The Distributed Design and Analysis of Computer Experiments (DDACE) package includes both classical design of experi-
ments methods [141] and stochastic sampling methods. The classical design of experiments methods in DDACE are central
composite design (CCD) and Box-Behnken (BB) sampling. A grid-based sampling (full-factorial) method is also available.
The stochastic methods are orthogonal array sampling [91] (which permits main effects calculations), Monte Carlo (random)
sampling, Latin hypercube sampling, and orthogonal array-Latin hypercube sampling. While DDACE LHS supports variables
with normal or uniform distributions, only uniform are supported through Dakota. Also DDACE does not allow enforcement
of user-specified correlation structure among the variables.

The sampling methods in DDACE can be used alone or in conjunction with other methods. For example, DDACE sampling
can be used with both surrogate-based optimization and optimization under uncertainty advanced methods. See Figure 15.5
for an example of how the DDACE settings are used in Dakota.

The following sections provide more detail about the sampling methods available for design of experiments in DDACE.

4.3.1 Central Composite Design

A Box-Wilson Central Composite Design, commonly called a central composite design (CCD), contains an embedded fac-
torial or fractional factorial design with center points that is augmented with a group of ’star points’ that allow estimation of
curvature. If the distance from the center of the design space to a factorial point is =1 unit for each factor, the distance from
the center of the design space to a star point is £« with | « |> 1. The precise value of o depends on certain properties desired
for the design and on the number of factors involved. The CCD design is specified in Dakota with the method command dace
central_composite.

As an example, with two input variables or factors, each having two levels, the factorial design is shown in Table 4.1 .

Table 4.1: Simple Factorial Design

Input 1 | Input 2

-1 -1
-1 +1
+1 -1
+1 +1

With a CCD, the design in Table 4.1 would be augmented with the following points shown in Table 4.2 if oo = 1.3. These
points define a circle around the original factorial design.

Note that the number of sample points specified in a CCD,samples, is a function of the number of variables in the problem:

samples = 1 + 2 x NumVar + 2VvmVer
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Table 4.2: Additional Points to make the factorial design a CCD

Input 1 \ Input 2

0 +1.3
0 -1.3
1.3 0
-1.3 0
0 0

4.3.2 Box-Behnken Design

The Box-Behnken design is similar to a Central Composite design, with some differences. The Box-Behnken design is a
quadratic design in that it does not contain an embedded factorial or fractional factorial design. In this design the treatment
combinations are at the midpoints of edges of the process space and at the center, as compared with CCD designs where the
extra points are placed at ’star points’ on a circle outside of the process space. Box-Behken designs are rotatable (or near rotat-
able) and require 3 levels of each factor. The designs have limited capability for orthogonal blocking compared to the central
composite designs. Box-Behnken requires fewer runs than CCD for 3 factors, but this advantage goes away as the number of
factors increases. The Box-Behnken design is specified in Dakota with the method command dace box_behnken.

Note that the number of sample points specified in a Box-Behnken design, samples, is a function of the number of variables
in the problem:

samples = 1+ 4« NumVar + (NumVar — 1)/2

4.3.3 Orthogonal Array Designs

Orthogonal array (OA) sampling is a widely used technique for running experiments and systematically testing factor ef-
fects [76]. An orthogonal array sample can be described as a 4-tuple (m, n, s, r), where m is the number of sample points,
n is the number of input variables, s is the number of symbols, and r is the strength of the orthogonal array. The number of
sample points, m, must be a multiple of the number of symbols, s. The number of symbols refers to the number of levels
per input variable. The strength refers to the number of columns where we are guaranteed to see all the possibilities an equal
number of times.

For example, Table 4.3 shows an orthogonal array of strength 2 for m = 8, with 7 variables:

Table 4.3: Orthogonal Array for Seven Variables

Input 1 \ Input 2 \ Input 3 \ Input 4 \ Input 5 \ Input 6 \ Input 7

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1
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If one picks any two columns, say the first and the third, note that each of the four possible rows we might see there, 00, 0 1,
10, 1 1, appears exactly the same number of times, twice in this case.

DDACE creates orthogonal arrays of strength 2. Further, the OAs generated by DDACE do not treat the factor levels as one
fixed value (0 or 1 in the above example). Instead, once a level for a variable is determined in the array, DDACE samples a
random variable from within that level. The orthogonal array design is specified in Dakota with the method command dace
oas.

The orthogonal array method in DDACE is the only method that allows for the calculation of main effects, specified with
the command main_effects. Main effects is a sensitivity analysis method which identifies the input variables that have
the most influence on the output. In main effects, the idea is to look at the mean of the response function when variable A
(for example) is at level 1 vs. when variable A is at level 2 or level 3. If these mean responses of the output are statistically
significantly different at different levels of variable A, this is an indication that variable A has a significant effect on the
response. The orthogonality of the columns is critical in performing main effects analysis, since the column orthogonality
means that the effects of the other variables ’cancel out’ when looking at the overall effect from one variable at its different
levels. There are ways of developing orthogonal arrays to calculate higher order interactions, such as two-way interactions
(what is the influence of Variable A * Variable B on the output?), but this is not available in DDACE currently. At present,
one way interactions are supported in the calculation of orthogonal array main effects within DDACE. The main effects are
presented as a series of ANOVA tables. For each objective function and constraint, the decomposition of variance of that
objective or constraint is presented as a function of the input variables. The p-value in the ANOVA table is used to indicate if
the input factor is significant. The p-value is the probability that you would have obtained samples more extreme than you did
if the input factor has no effect on the response. For example, if you set a level of significance at 0.05 for your p-value, and
the actual p-value is 0.03, then the input factor has a significant effect on the response.

4.3.4 Grid Design

In a grid design, a grid is placed over the input variable space. This is very similar to a multi-dimensional parameter study
where the samples are taken over a set of partitions on each variable (see Section 3.5). The main difference is that in grid
sampling, a small random perturbation is added to each sample value so that the grid points are not on a perfect grid. This
is done to help capture certain features in the output such as periodic functions. A purely structured grid, with the samples
exactly on the grid points, has the disadvantage of not being able to capture important features such as periodic functions with
relatively high frequency (due to aliasing). Adding a random perturbation to the grid samples helps remedy this problem.

Another disadvantage with grid sampling is that the number of sample points required depends exponentially on the input
dimensions. In grid sampling, the number of samples is the number of symbols (grid partitions) raised to the number of
variables. For example, if there are 2 variables, each with 5 partitions, the number of samples would be 52. In this case,
doubling the number of variables squares the sample size. The grid design is specified in Dakota with the method command
dace grid.

4.3.5 Monte Carlo Design

Monte Carlo designs simply involve pure Monte-Carlo random sampling from uniform distributions between the lower and
upper bounds on each of the input variables. Monte Carlo designs, specified by dace random, are a way to generate a set
of random samples over an input domain.

4.3.6 LHS Design

DDACE offers the capability to generate Latin Hypercube designs. For more information on Latin Hypercube sampling, see
Section 5.2. Note that the version of LHS in DDACE generates uniform samples (uniform between the variable bounds).
The version of LHS offered with nondeterministic sampling can generate LHS samples according to a number of distribution
types, including normal, lognormal, weibull, beta, etc. To specify the DDACE version of LHS, use the method command
dace lhs.
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4.3.7 OA-LHS Design

DDACE offers a hybrid design which is combination of an orthogonal array and a Latin Hypercube sample. This design is
specified with the method command dace oa_lhs. This design has the advantages of both orthogonality of the inputs as
well as stratification of the samples (see [114]).

4.4 FSUDace

The Florida State University Design and Analysis of Computer Experiments (FSUDace) package provides quasi-Monte Carlo
sampling (Halton and Hammersley) and Centroidal Voronoi Tessellation (CVT) methods. All three methods natively generate
sets of uniform random variables on the interval [0, 1] (or in Dakota, on user-specified uniform intervals).

The quasi-Monte Carlo and CVT methods are designed with the goal of low discrepancy. Discrepancy refers to the nonunifor-
mity of the sample points within the unit hypercube. Low discrepancy sequences tend to cover the unit hypercube reasonably
uniformly. Quasi-Monte Carlo methods produce low discrepancy sequences, especially if one is interested in the uniformity
of projections of the point sets onto lower dimensional faces of the hypercube (usually 1-D: how well do the marginal distri-
butions approximate a uniform?) CVT does very well volumetrically: it spaces the points fairly equally throughout the space,
so that the points cover the region and are isotropically distributed with no directional bias in the point placement. There are
various measures of volumetric uniformity which take into account the distances between pairs of points, regularity measures,
etc. Note that CVT does not produce low-discrepancy sequences in lower dimensions, however: the lower-dimension (such as
1-D) projections of CVT can have high discrepancy.

The quasi-Monte Carlo sequences of Halton and Hammersley are deterministic sequences determined by a set of prime bases.
A Halton design is specified in Dakota with the method command fsu_quasi-mc halton, and the Hammersley design is
specified with the command fsu_quasi_mc hammersley. For more details about the input specification, see the Refer-
ence Manual. CVT points tend to arrange themselves in a pattern of cells that are roughly the same shape. To produce CVT
points, an almost arbitrary set of initial points is chosen, and then an internal set of iterations is carried out. These iterations re-
peatedly replace the current set of sample points by an estimate of the centroids of the corresponding Voronoi subregions [30].
A CVT design is specified in Dakota with the method command fsu_cvt.

The methods in FSUDace are useful for design of experiments because they provide good coverage of the input space, thus
allowing global sensitivity analysis.

4.5 PSUADE MOAT

PSUADE (Problem Solving Environment for Uncertainty Analysis and Design Exploration) is a Lawrence Livermore National
Laboratory tool for metamodeling, sensitivity analysis, uncertainty quantification, and optimization. Its features include non-
intrusive and parallel function evaluations, sampling and analysis methods, an integrated design and analysis framework,
global optimization, numerical integration, response surfaces (MARS and higher order regressions), graphical output with
Pgplot or Matlab, and fault tolerance [140]. Dakota includes a prototype interface to its Morris One-At-A-Time (MOAT)
screening method, a valuable tool for global sensitivity (including interaction) analysis.

The Morris One-At-A-Time method, originally proposed by M. D. Morris [106], is a screening method, designed to explore a
computational model to distinguish between input variables that have negligible, linear and additive, or nonlinear or interaction
effects on the output. The computer experiments performed consist of individually randomized designs which vary one input
factor at a time to create a sample of its elementary effects.

With MOAT, each dimension of a k—dimensional input space is uniformly partitioned into p levels, creating a grid of p* points
x € R* at which evaluations of the model y(x) might take place. An elementary effect corresponding to input ¢ is computed
by a forward difference
Ae;) —
di(x) = YO Z) yx) @1

where e; is the i coordinate vector, and the step A is typically taken to be large (this is not intended to be a local derivative
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approximation). In the present implementation of MOAT, for an input variable scaled to [0, 1], A = BT,

p%l), so the step used
to find elementary effects is slightly larger than half the input range.

The distribution of elementary effects d; over the input space characterizes the effect of input 4 on the output of interest. After
generating r samples from this distribution, their mean,

1 )
pi = Zd : 4.2)
j=1
modified mean
* 1 a j
=1, 43)

(using absolute value) and standard deviation

oi= |+ 3 (4 )" 4.4)

j=1

are computed for each input ¢. The mean and modified mean give an indication of the overall effect of an input on the output.
Standard deviation indicates nonlinear effects or interactions, since it is an indicator of elementary effects varying throughout
the input space.

The MOAT method is selected with method keyword psuade_moat as shown in the sample Dakota input deck in Figure 4.1.
The number of samples (samples) must be a positive integer multiple of (number of continuous design variables &k + 1) and
will be automatically adjusted if misspecified. The number of partitions (partitions) applies to each variable being studied
and must be odd (the number of MOAT levels p per variable is partitions + 1, similar to Dakota multidimensional parameter
studies). This will also be adjusted at runtime as necessary. Finite user-specified lower and upper bounds are required and will
be scaled as needed by the method. For more information on use of MOAT sampling, see the Morris example in Section 20.9,
or Saltelli, et al. [120].

4.6 Sensitivity Analysis

4.6.1 Sensitivity Analysis Overview

In many engineering design applications, sensitivity analysis techniques and parameter study methods are useful in identifying
which of the design parameters have the most influence on the response quantities. This information is helpful prior to an
optimization study as it can be used to remove design parameters that do not strongly influence the responses. In addition,
these techniques can provide assessments as to the behavior of the response functions (smooth or nonsmooth, unimodal or
multimodal) which can be invaluable in algorithm selection for optimization, uncertainty quantification, and related methods.
In a post-optimization role, sensitivity information is useful is determining whether or not the response functions are robust
with respect to small changes in the optimum design point.

In some instances, the term sensitivity analysis is used in a local sense to denote the computation of response derivatives
at a point. These derivatives are then used in a simple analysis to make design decisions. Dakota supports this type of
study through numerical finite-differencing or retrieval of analytic gradients computed within the analysis code. The desired
gradient data is specified in the responses section of the Dakota input file and the collection of this data at a single point is
accomplished through a parameter study method with no steps. This approach to sensitivity analysis should be distinguished
from the activity of augmenting analysis codes to internally compute derivatives using techniques such as direct or adjoint
differentiation, automatic differentiation (e.g., ADIFOR), or complex step modifications. These sensitivity augmentation
activities are completely separate from Dakota and are outside the scope of this manual. However, once completed, Dakota
can utilize these analytic gradients to perform optimization, uncertainty quantification, and related studies more reliably and
efficiently.

In other instances, the term sensitivity analysis is used in a more global sense to denote the investigation of variability in the
response functions. Dakota supports this type of study through computation of response data sets (typically function values
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# Dakota Input File: morris_ps_moat.in

environment
tabular_data
tabular_data_file ’'dakota_psuade.O.dat’

method
psuade_moat
samples = 84
partitions = 3
seed = 500

variables
continuous_design = 2

lower_bounds =

upper_bounds =

P P O O
ocooo
P P O O O
oo oo
P P O O
cooo
P P O O
ocooo
R = O O
oo oo
P P O O
cooo
P P O O
ocooo
R = O O
oo oo
R P O O
cooo
P B O O
ocooo

interface
analysis_drivers = 'morris’
fork
asynchronous evaluation_concurrency = 5

responses
objective_functions = 1
no_gradients
no_hessians

Figure 4.1: Dakota input file showing the Morris One-at-a-Time method — see dakota/share/dakota/
examples/users/morris_ps_moat.in
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only, but all data sets are supported) at a series of points in the parameter space. The series of points is defined using either
a vector, list, centered, or multidimensional parameter study method. For example, a set of closely-spaced points in a vector
parameter study could be used to assess the smoothness of the response functions in order to select a finite difference step
size, and a set of more widely-spaced points in a centered or multidimensional parameter study could be used to determine
whether the response function variation is likely to be unimodal or multimodal. See Chapter 3 for additional information on
these methods. These more global approaches to sensitivity analysis can be used to obtain trend data even in situations when
gradients are unavailable or unreliable, and they are conceptually similar to the design of experiments methods and sampling
approaches to uncertainty quantification described in the following sections.

4.6.2 Assessing Sensitivity with DACE

Like parameter studies (see Chapter 3), the DACE techniques are useful for characterizing the behavior of the response
functions of interest through the parameter ranges of interest. In addition to direct interrogation and visualization of the
sampling results, a number of techniques have been developed for assessing the parameters which are most influential in the
observed variability in the response functions. One example of this is the well-known technique of scatter plots, in which
the set of samples is projected down and plotted against one parameter dimension, for each parameter in turn. Scatter plots
with a uniformly distributed cloud of points indicate parameters with little influence on the results, whereas scatter plots
with a defined shape to the cloud indicate parameters which are more significant. Related techniques include analysis of
variance (ANOVA) [107] and main effects analysis, in which the parameters which have the greatest influence on the results
are identified from sampling results. Scatter plots and ANOVA may be accessed through import of Dakota tabular results (see
Section 13.3) into external statistical analysis programs such as S-plus, Minitab, etc.

Running any of the design of experiments or sampling methods allows the user to save the results in a tabular data file, which
then can be read into a spreadsheet or statistical package for further analysis. In addition, we have provided some functions to
help determine the most important variables.

We take the definition of uncertainty analysis from [120]: “The study of how uncertainty in the output of a model can be
apportioned to different sources of uncertainty in the model input.”

As a default, Dakota provides correlation analyses when running LHS. Correlation tables are printed with the simple, partial,
and rank correlations between inputs and outputs. These can be useful to get a quick sense of how correlated the inputs are to
each other, and how correlated various outputs are to inputs. The correlation analyses are explained further in Chapter 5.2.

We also have the capability to calculate sensitivity indices through Variance-based Decomposition (VBD). Variance-based
decomposition is a global sensitivity method that summarizes how the uncertainty in model output can be apportioned to
uncertainty in individual input variables. VBD uses two primary measures, the main effect sensitivity index S; and the total
effect index 7. The main effect sensitivity index corresponds to the fraction of the uncertainty in the output, Y, that can be
attributed to input z; alone. The total effects index corresponds to the fraction of the uncertainty in the output, Y, that can be
attributed to input x; and its interactions with other variables. The main effect sensitivity index compares the variance of the
conditional expectation Var,, [E(Y|z;)] against the total variance Var(Y"). Formulas for the indices are:

_ Vary, [E(Y|x:)]

Si = Var(Y) .5)

and
_EWVar(Y|z_;)) Var(Y)—Var(E[Y|z_4])

Ii= Var(Y) N Var(Y)

(4.6)

where Y = f(x) and 2—; = (1, ooy Tic1, Tit1, -es Tm)-

The calculation of \S; and T; requires the evaluation of m-dimensional integrals which are typically approximated by Monte-
Carlo sampling. More details on the calculations and interpretation of the sensitivity indices can be found in [120]. In
Dakota version 5.1, we have improved calculations for the calculation of the S; and T; indices when using sampling. The
implementation details of these calculatiosn are provided in [153]. VBD can be specified for any of the sampling or DACE
methods using the command variance_based.-decomposition. Note that VBD is extremely computationally intensive
when using sampling since replicated sets of sample values are evaluated. If the user specified a number of samples, N, and
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a number of nondeterministic variables, M, variance-based decomposition requires the evaluation of N (M + 2) samples. To
obtain sensitivity indices that are reasonably accurate, we recommend that NV, the number of samples, be at least one hundred
and preferably several hundred or thousands. Because of the computational cost, variance-based decomposition is turned off as
a default for sampling or DACE. Another alternative, however, is to obtain these indices using one of the stochastic expansion
methods described in Section 5.4. The calculation of the indices using expansion methods is much more efficient since the
VBD indices are analytic functions of the coefficients in the stochastic expansion. The paper by Weirs et al. [153] compares
different methods for calculating the sensitivity indices for nonlinear problems with significant interaction effects.

In terms of interpretation of the sensitivity indices, a larger value of the sensitivity index, S;, means that the uncertainty in
the input variable ¢ has a larger effect on the variance of the output. Note that the sum of the main effect indices will be less
than or equal to one. If the sum of the main effect indices is much less than one, it indicates that there are significant two-way,
three-way, or higher order interactions that contribute significantly to the variance. There is no requirement that the sum of the
total effect indices is one: in most cases, the sum of the total effect indices will be greater than one. An example of the Main
and Total effects indices as calculated by Dakota using sampling is shown in Figure 4.2

Global sensitivity indices for each response function:
response_fn_1 Sobol indices:
Main Total
4.7508913283e-01 5.3242162037e-01 uuv_1
3.8112392892e-01 4.9912486515e-01 uuv_2

Figure 4.2: Dakota output for Variance-based Decomposition

Finally, we have the capability to calculate a set of quality metrics for a particular input sample. These quality metrics measure
various aspects relating to the volumetric spacing of the samples: are the points equally spaced, do they cover the region,
are they isotropically distributed, do they have directional bias, etc.? The quality metrics are explained in more detail in the
Reference Manual.

4.7 DOE Usage Guidelines

Parameter studies, classical design of experiments (DOE), design/analysis of computer experiments (DACE), and sampling
methods share the purpose of exploring the parameter space. When a global space-filling set of samples is desired, then the
DOE, DACE, and sampling methods are recommended. These techniques are useful for scatter plot and variance analysis as
well as surrogate model construction.

The distinction between DOE and DACE methods is that the former are intended for physical experiments containing an
element of nonrepeatability (and therefore tend to place samples at the extreme parameter vertices), whereas the latter are
intended for repeatable computer experiments and are more space-filling in nature.

The distinction between DOE/DACE and sampling is drawn based on the distributions of the parameters. DOE/DACE methods
typically assume uniform distributions, whereas the sampling approaches in Dakota support a broad range of probability
distributions.

To use sampling in design of experiments mode (as opposed to uncertainty quantification mode), an active view override
(e.g., active all) can be included in the variables specification (see Section 9.5.1) of the Dakota input file.

Design of experiments method selection recommendations are summarized in Table 4.4.
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Table 4.4: Guidelines for selection of parameter study, DOE, DACE, and sampling methods.

Method
Classification

Applications

Applicable Methods

parameter study

sensitivity analysis,
directed parameter space investigations

centered_parameter_study,
list_parameter_study,
multidim_parameter_study,
vector_parameter_study

classical design
of experiments

physical experiments
(parameters are uniformly distributed)

dace (box_behnken,
central_composite)

design of computer

variance analysis,

dace (grid, random, oas, lhs, oa_lhs),

(parameters have general probability distributions)

experiments space filling designs fsu_quasi_mc (halton, hammersley),
(parameters are uniformly distributed) fsu_cvt, psuade_moat
sampling space filling designs sampling (Monte Carlo or LHS)

with optional active view override
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Chapter 5

Uncertainty Quantification Capabilities

5.1 Overview

At a high level, uncertainty quantification (UQ) or nondeterministic analysis is the process of (1) characterizing input uncer-
tainties, (2) forward propagating these uncertainties through a computational model, and (3) performing statistical or interval
assessments on the resulting responses. This process determines the effect of uncertainties and assumptions on model outputs
or results. In Dakota, uncertainty quantification methods primarily focus on the forward propagation and analysis parts of
the process (2 and 3), where probabilistic or interval information on parametric inputs are mapped through the computational
model to assess statistics or intervals on outputs. For an overview of these approaches for engineering applications, con-
sult [74]. Dakota also has emerging methods for inference or inverse UQ, such as Bayesian calibration. These methods help
with (1) by inferring a statistical characterization of input parameters that is consistent with available observational data.

UQ is related to sensitivity analysis in that the common goal is to gain an understanding of how variations in the parameters
affect the response functions of the engineering design problem. However, for UQ, some or all of the components of the
parameter vector are considered to be uncertain as specified by particular probability distributions (e.g., normal, exponential,
extreme value) or other uncertainty specifications. By assigning specific distributional structure to the inputs, distributional
structure for the outputs (i.e, response statistics) can be inferred. This migrates from an analysis that is more qualitative in
nature, in the case of sensitivity analysis, to an analysis that is more rigorously quantitative.

UQ methods can be distinguished by their ability to propagate aleatory or epistemic input uncertainty characterizations, where
aleatory uncertainties are irreducible variabilities inherent in nature and epistemic uncertainties are reducible uncertainties
resulting from a lack of knowledge. For aleatory uncertainties, probabilistic methods are commonly used for computing
response distribution statistics based on input probability distribution specifications. Conversely, for epistemic uncertainties,
use of probability distributions is based on subjective prior knowledge rather than objective data, and we may alternatively
explore nonprobabilistic methods based on interval specifications.

5.1.1 Summary of Dakota UQ Methods

Dakota contains capabilities for performing nondeterministic analysis with both types of input uncertainty. These UQ methods
have been developed by Sandia Labs, in conjunction with collaborators in academia [54, 55, 35, 1.

The aleatory UQ methods in Dakota include various sampling-based approaches (e.g., Monte Carlo and Latin Hypercube sam-
pling), local and global reliability methods, and stochastic expansion (polynomial chaos expansions, stochastic collocation,
and functional tensor train) approaches. The epistemic UQ methods include local and global interval analysis and Dempster-
Shafer evidence theory. These are summarized below and then described in more depth in subsequent sections of this chap-
ter. Dakota additionally supports mixed aleatory/epistemic UQ via interval-valued probability, second-order probability, and
Dempster-Shafer theory of evidence. These involve advanced model recursions and are described in Section 15.1.
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LHS (Latin Hypercube Sampling): This package provides both Monte Carlo (random) sampling and Latin Hypercube
sampling methods, which can be used with probabilistic variables in Dakota that have the following distributions: normal,
lognormal, uniform, loguniform, triangular, exponential, beta, gamma, gumbel, frechet, weibull, poisson, binomial, negative
binomial, geometric, hypergeometric, and user-supplied histograms. In addition, LHS accounts for correlations among the
variables [83], which can be used to accommodate a user-supplied correlation matrix or to minimize correlation when a
correlation matrix is not supplied. In addition to a standard sampling study, we support the capability to perform “incremental”
LHS, where a user can specify an initial LHS study of N samples, and then re-run an additional incremental study which will
double the number of samples (to 2N, with the first N being carried from the initial study). The full incremental sample of size
2N is also a Latin Hypercube, with proper stratification and correlation. Statistics for each increment are reported separately
at the end of the study.

Reliability Methods: This suite of methods includes both local and global reliability methods. Local methods include first-
and second-order versions of the Mean Value method (MVFOSM and MVSOSM) and a variety of most probable point (MPP)
search methods, including the Advanced Mean Value method (AMV and AMV?), the iterated Advanced Mean Value method
(AMV+ and AMV?+), the Two-point Adaptive Nonlinearity Approximation method (TANA-3), and the traditional First Order
and Second Order Reliability Methods (FORM and SORM) [74]. The MPP search methods may be used in forward (Reliability
Index Approach (RIA)) or inverse (Performance Measure Approach (PMA)) modes, as dictated by the type of level mappings.
Each of the MPP search techniques solve local optimization problems in order to locate the MPP, which is then used as
the point about which approximate probabilities are integrated (using first- or second-order integrations in combination with
refinements based on importance sampling). Global reliability methods are designed to handle nonsmooth and multimodal
failure surfaces, by creating global approximations based on Gaussian process models. They accurately resolve a particular
contour of a response function and then estimate probabilities using multimodal adaptive importance sampling.

Stochastic Expansion Methods: Theoretical development of these techniques mirrors that of deterministic finite element
analysis utilizing the notions of projection, orthogonality, and weak convergence [54], [55].

Rather than focusing on estimating specific statistics (e.g., failure probability), they form an approximation to the functional
relationship between response functions and their random inputs, which provides a more complete uncertainty representation
for use in more advanced contexts, such as coupled multi-code simulations. Expansion methods include polynomial chaos
expansions (PCE), which expand in a basis of multivariate orthogonal polynomials (e.g., Hermite, Legendre) that are tailored
to representing particular input probability distributions (e.g., normal, uniform); stochastic collocation (SC), which expand in
a basis of multivariate interpolation polynomials (e.g., Lagrange); and functional tensor train (FTT), which leverages concepts
from data compression to expand using low rank products of polynomial cores. For PCE, expansion coefficients may be eval-
uated using a spectral projection approach (based on sampling, tensor-product quadrature, Smolyak sparse grid, or cubature
methods for numerical integration) or a regression approach (least squares or compressive sensing). For SC, interpolants are
formed over tensor-product or sparse grids and may be local or global, value-based or gradient-enhanced, and nodal or hi-
erarchical. In global value-based cases (Lagrange polynomials), the barycentric formulation is used [10, 90, 80] to improve
numerical efficiency and stability. For FTT, regression via regularized nonlinear least squares is employed for recovering
low rank coefficients, and cross-validation schemes are available to determine the best rank and polynomial basis order set-
tings. Each of these methods provide analytic response moments and variance-based metrics; however, PDFs and CDF/CCDF
mappings are computed numerically by sampling on the expansion.

Importance Sampling: Importance sampling is a method that allows one to estimate statistical quantities such as failure
probabilities in a way that is more efficient than Monte Carlo sampling. The core idea in importance sampling is that one
generates samples that are preferentially placed in important regions of the space (e.g. in or near the failure region or user-
defined region of interest), then appropriately weights the samples to obtain an unbiased estimate of the failure probability.

Adaptive Sampling: The goal in performing adaptive sampling is to construct a surrogate model that can be used as an
accurate predictor of an expensive simulation. The aim is to build a surrogate that minimizes the error over the entire domain
of interest using as little data as possible from the expensive simulation. The adaptive sampling methods start with an initial
LHS sample, and then adaptively choose samples that optimize a particular criteria. For example, if a set of additional possible
sample points are generated, one criteria is to pick the next sample point as the point which maximizes the minimum distance
to the existing points (maximin). Another criteria is to pick the sample point where the surrogate indicates the most uncertainty
in its prediction.

Recently, Dakota added a new method to assess failure probabilities based on ideas from computational geometry. Part of the
idea underpinning this method is the idea of throwing “darts” which are higher dimensional objects than sample points (e.g.
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lines, planes, etc.) The POF (Probability-of-Failure) darts method uses these objects to estimate failure probabilities.

Interval Analysis: Interval analysis is often used to model epistemic uncertainty. In interval analysis, one assumes that nothing
is known about an epistemic uncertain variable except that its value lies somewhere within an interval. In this situation, it is
NOT assumed that the value has a uniform probability of occurring within the interval. Instead, the interpretation is that any
value within the interval is a possible value or a potential realization of that variable. In interval analysis, the uncertainty
quantification problem is one of determining the resulting bounds on the output (defining the output interval) given interval
bounds on the inputs. Again, any output response that falls within the output interval is a possible output with no frequency
information assigned to it.

‘We have the capability to perform interval analysis using either global or local methods. In the global approach, one uses either
a global optimization method (based on a Gaussian process surrogate model) or a sampling method to assess the bounds. The
local method uses gradient information in a derivative-based optimization approach, using either SQP (sequential quadratic
programming) or a NIP (nonlinear interior point) method to obtain bounds.

Dempster-Shafer Theory of Evidence: The objective of evidence theory is to model the effects of epistemic uncertainties.
Epistemic uncertainty refers to the situation where one does not know enough to specify a probability distribution on a variable.
Sometimes epistemic uncertainty is referred to as subjective, reducible, or lack of knowledge uncertainty. In contrast, aleatory
uncertainty refers to the situation where one does have enough information to specify a probability distribution. In Dempster-
Shafer theory of evidence, the uncertain input variables are modeled as sets of intervals. The user assigns a basic probability
assignment (BPA) to each interval, indicating how likely it is that the uncertain input falls within the interval. The intervals may
be overlapping, contiguous, or have gaps. The intervals and their associated BPAs are then propagated through the simulation
to obtain cumulative distribution functions on belief and plausibility. Belief is the lower bound on a probability estimate that is
consistent with the evidence, and plausibility is the upper bound on a probability estimate that is consistent with the evidence.
In addition to the full evidence theory structure, we have a simplified capability for users wanting to perform pure interval
analysis (e.g. what is the interval on the output given intervals on the input) using either global or local optimization methods.
Interval analysis is often used to model epistemic variables in nested analyses, where probability theory is used to model
aleatory variables.

Bayesian Calibration: In Bayesian calibration, uncertain input parameters are initially characterized by a “prior” distribution.
A Bayesian calibration approach uses experimental data together with a likelihood function, which describes how well a
realization of the parameters is supported by the data, to update this prior knowledge. The process yields a posterior distribution
of the parameters most consistent with the data, such that running the model at samples from the posterior yields results
consistent with the observational data.

5.1.2 Variables and Responses for UQ

UQ methods that perform a forward uncertainty propagation map probability or interval information for input parameters
into probability or interval information for output response functions. The m functions in the Dakota response data set are
interpreted as m general response functions by the Dakota methods (with no specific interpretation of the functions as for
optimization and least squares).

Within the variables specification, uncertain variable descriptions are employed to define the random variable distributions
(refer to Section 9.3). For Bayesian inference methods, these uncertain variable properties characterize the prior distribution
to be updated and constrained by the observational data. As enumerated in Section 9.3, uncertain variables types are catego-
rized as either aleatory or epistemic and as either continuous or discrete, where discrete types include integer ranges, integer
sets, string sets, and real sets. The continuous aleatory distribution types include: normal (Gaussian), lognormal, uniform,
loguniform, triangular, exponential, beta, gamma, gumbel, frechet, weibull, and histogram bin. The discrete aleatory distri-
bution types include: poisson, binomial, negative binomial, geometric, hypergeometric, and discrete histograms for integers,
strings, and reals. The epistemic distribution types include continuous intervals, discrete integer ranges, and discrete sets for
integers, strings, and reals. While many of the epistemic types appear similar to aleatory counterparts, a key difference is that
the latter requires probabilities for each value within a range or set, whereas the former will use, at most, a subjective belief
specification.

When gradient and/or Hessian information is used in an uncertainty assessment, derivative components are normally computed
with respect to the active continuous variables, which could be aleatory uncertain, epistemic uncertain, aleatory and epistemic
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uncertain, or all continuous variables, depending on the active view (see Section 9.5).

5.2 Sampling Methods

Sampling techniques are selected using the sampling method selection. This method generates sets of samples according
to the probability distributions of the uncertain variables and maps them into corresponding sets of response functions, where
the number of samples is specified by the samples integer specification. Means, standard deviations, coefficients of vari-
ation (COVs), and 95% confidence intervals are computed for the response functions. Probabilities and reliabilities may be
computed for response_levels specifications, and response levels may be computed for either probability_levels
or reliability_levels specifications (refer to the Method keywords section in the Dakota Reference Manual [3] for
additional information).

Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by Dakota and are chosen by
specifying sample_type as random or 1hs. In Monte Carlo sampling, the samples are selected randomly according to
the user-specified probability distributions. Latin hypercube sampling is a stratified sampling technique for which the range
of each uncertain variable is divided into N, segments of equal probability, where N is the number of samples requested.
The relative lengths of the segments are determined by the nature of the specified probability distribution (e.g., uniform has
segments of equal width, normal has small segments near the mean and larger segments in the tails). For each of the uncertain
variables, a sample is selected randomly from each of these equal probability segments. These N values for each of the
individual parameters are then combined in a shuffling operation to create a set of [N, parameter vectors with a specified
correlation structure. A feature of the resulting sample set is that every row and column in the hypercube of partitions has
exactly one sample. Since the total number of samples is exactly equal to the number of partitions used for each uncertain
variable, an arbitrary number of desired samples is easily accommodated (as compared to less flexible approaches in which the
total number of samples is a product or exponential function of the number of intervals for each variable, i.e., many classical
design of experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their independence from the sci-
entific disciplines involved in the analysis. The main drawback of these techniques is the large number of function evaluations
needed to generate converged statistics, which can render such an analysis computationally very expensive, if not intractable,
for real-world engineering applications. LHS techniques, in general, require fewer samples than traditional Monte Carlo for
the same accuracy in statistics, but they still can be prohibitively expensive. For further information on the method and its
relationship to other sampling techniques, one is referred to the works by McKay, et al. [104], Iman and Shortencarier [83],
and Helton and Davis [77]. Note that under certain separability conditions associated with the function to be sampled, Latin
hypercube sampling provides a more accurate estimate of the mean value than does random sampling. That is, given an equal
number of samples, the LHS estimate of the mean will have less variance than the mean value obtained through random
sampling.

Figure 5.1 demonstrates Latin hypercube sampling on a two-variable parameter space. Here, the range of both parameters, x1
and x2, is [0, 1]. Also, for this example both =1 and 2 have uniform statistical distributions. For Latin hypercube sampling,
the range of each parameter is divided into p “bins” of equal probability. For parameters with uniform distributions, this
corresponds to partitions of equal size. For n design parameters, this partitioning yields a total of p™ bins in the parameter
space. Next, p samples are randomly selected in the parameter space, with the following restrictions: (a) each sample is
randomly placed inside a bin, and (b) for all one-dimensional projections of the p samples and bins, there will be one and
only one sample in each bin. In a two-dimensional example such as that shown in Figure 5.1, these LHS rules guarantee that
only one bin can be selected in each row and column. For p = 4, there are four partitions in both x, and z2. This gives
a total of 16 bins, of which four will be chosen according to the criteria described above. Note that there is more than one
possible arrangement of bins that meet the LHS criteria. The dots in Figure 5.1 represent the four sample sites in this example,
where each sample is randomly located in its bin. There is no restriction on the number of bins in the range of each parameter,
however, all parameters must have the same number of bins.

The actual algorithm for generating Latin hypercube samples is more complex than indicated by the description given above.
For example, the Latin hypercube sampling method implemented in the LHS code [136] takes into account a user-specified
correlation structure when selecting the sample sites. For more details on the implementation of the LHS algorithm, see
Reference [136].
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X2

Xy

Figure 5.1: An example of Latin hypercube sampling with four bins in design parameters z; and x2. The dots are
the sample sites.

In addition to Monte Carlo vs. LHS design choices, Dakota sampling methods support options for incrementally-refined
designs, generation of approximately determinant-optimal (D-optimal) designs, and selection of sample sizes to satisfy Wilks’
criteria.

5.2.1 Uncertainty Quantification Example using Sampling Methods

The input file in Figure 5.2 demonstrates the use of Latin hypercube Monte Carlo sampling for assessing probability of failure
as measured by specified response levels. The two-variable Textbook example problem (see Equation 20.1) will be used to
demonstrate the application of sampling methods for uncertainty quantification where it is assumed that z; and x2 are uniform
uncertain variables on the interval [0, 1].

The number of samples to perform is controlled with the samples specification, the type of sampling algorithm to use is
controlled with the sample_type specification, the levels used for computing statistics on the response functions is speci-
fied with the response_levels input, and the seed specification controls the sequence of the pseudo-random numbers
generated by the sampling algorithms. The input samples generated are shown in Figure 5.3 for the case where samples =5
and samples = 10 for both random (o) and 1hs (4) sample types.

Latin hypercube sampling ensures full coverage of the range of the input variables, which is often a problem with Monte Carlo
sampling when the number of samples is small. In the case of samples = 5, poor stratification is evident in 2, as four out
of the five Monte Carlo samples are clustered in the range 0.35 < 1 < 0.55, and the regions 1 < 0.3 and 0.6 < 7 < 0.9
are completely missed. For the case where samples = 10, some clustering in the Monte Carlo samples is again evident
with 4 samples in the range 0.5 < x1 < 0.55. In both cases, the stratification with LHS is superior.

The response function statistics returned by Dakota are shown in Figure 5.4. The first block of output specifies the response
sample means, sample standard deviations, and skewness and kurtosis. The second block of output displays confidence
intervals on the means and standard deviations of the responses. The third block defines Probability Density Function (PDF)
histograms of the samples: the histogram bins are defined by the lower and upper values of the bin and the corresponding
density for that bin. Note that these bin endpoints correspond to the response_levels and/or probability_levels
defined by the user in the Dakota input file. If there are just a few levels, these histograms may be coarse. Dakota does not do
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# Dakota Input File: textbook_ug_sampling.in

environment
tabular_data
tabular_data_file = "textbook_ug _sampling.dat’
top_method_pointer = 'UQ’
method
id_method = ’'UQ’
sampling

sample_type lhs
samples = 10

seed = 98765
response_levels = 0.
0.
0.

o o o
NN
o o o
ENRENREN

1
1
1
distribution cumulative
variables
uniform_uncertain = 2
lower_bounds = O. 0.

upper_bounds
descriptors

Il
s
=

Il T x2!

interface
id_interface = "I1’
analysis_drivers = ’'text_book’
fork
asynchronous evaluation_concurrency = 5

responses
response_functions = 3
no_gradients
no_hessians

Figure 5.2: Dakota input file for UQ example using LHS — see dakota/share/dakota/examples/
users/textbook_ug_sampling.in
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Figure 5.3: Distribution of input sample points for random (A) and lhs (4) sampling for samples=>5 and 10.

anything to optimize the bin size or spacing. Finally, the last section of the output defines the Cumulative Distribution Function
(CDF) pairs. In this case, distribution cumulative was specified for the response functions, and Dakota presents the
probability levels corresponding to the specified response levels (response_levels) that were set. The default compute
probabilities was used. Alternatively, Dakota could have provided CCDF pairings, reliability levels corresponding to
prescribed response levels, or response levels corresponding to prescribed probability or reliability levels.

In addition to obtaining statistical summary information of the type shown in Figure 5.4, the results of LHS sampling also
include correlations. Four types of correlations are returned in the output: simple and partial “raw” correlations, and simple
and partial “rank” correlations. The raw correlations refer to correlations performed on the actual input and output data. Rank
correlations refer to correlations performed on the ranks of the data. Ranks are obtained by replacing the actual data by the
ranked values, which are obtained by ordering the data in ascending order. For example, the smallest value in a set of input
samples would be given a rank 1, the next smallest value a rank 2, etc. Rank correlations are useful when some of the inputs
and outputs differ greatly in magnitude: then it is easier to compare if the smallest ranked input sample is correlated with the
smallest ranked output, for example.

Correlations are always calculated between two sets of sample data. One can calculate correlation coefficients between two
input variables, between an input and an output variable (probably the most useful), or between two output variables. The
simple correlation coefficients presented in the output tables are Pearson’s correlation coefficient, which is defined for two

: . _ il —)(yi—7)
variables  and y as: Corr(z,y) = oSN
but a partial correlation coefficient between two variables measures their correlation while adjusting for the effects of the other
variables. For example, say one has a problem with two inputs and one output; and the two inputs are highly correlated. Then
the correlation of the second input and the output may be very low after accounting for the effect of the first input. The rank
correlations in Dakota are obtained using Spearman’s rank correlation. Spearman’s rank is the same as the Pearson correlation

coefficient except that it is calculated on the rank data.

Partial correlation coefficients are similar to simple correlations,

Figure 5.5 shows an example of the correlation output provided by Dakota for the input file in Figure 5.2. Note that these
correlations are presently only available when one specifies 1hs as the sampling method under sampling. Also note that the
simple and partial correlations should be similar in most cases (in terms of values of correlation coefficients). This is because
we use a default “restricted pairing” method in the LHS routine which forces near-zero correlation amongst uncorrelated
inputs.

Finally, note that the LHS package can be used for design of experiments over design and state variables by including an
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Statistics based on 10 samples:

Sample moment statistics for each
Mean
3.8383990322e-01
7.4798705803e-02
7.0946176558e-02

response_fn_1
response_fn_2
response_fn_3

95% confidence intervals for each
LowerCI_Mean
response_fn_1 9.5683125821e-02
response_fn_2 -1.7333078422e-01
response_fn_3 -1.7337143113e-01

Probability Density Function
PDF for response_fn_1:

(PDF)

response function:
Std Dev
4.0281539886e-01
3.4686110941e-01
3.4153246532e-01

response function:
UpperCI_Mean
6.7199668063e-01
3.2292819583e-01
3.1526378424e-01

i

2
2
2

Skewness

.2404952971e+00
.5716015887e-01
.2851897926e-01

LowerCI_StdDev

.7707061315e-01
.3858328290e-01
.3491805390e-01

-8

o

Kurtosis

.5529797327e-01
-5.
.2527332042e-01

8418924529e-01

UpperCI_StdDev

.3538389383e-01
.3323317325e-01
.2350514636e-01

histograms for each response function:

Bin Lower

Bin Lower
-3.8118095128e-01
1.0000000000e-01
2.0000000000e-01
6.0000000000e-01

Response Level
1.0000000000e-01
2.0000000000e-01
6.0000000000e-01

Response Level
1.0000000000e-01
2.0000000000e-01
6.0000000000e-01

Response Level
1.0000000000e-01
2.0000000000e-01
6.0000000000e-01

PDF for response_fn_3:

Level mappings for each
Cumulative Distribution
Probability Level
3.
5.
7.
Cumulative Distribution Function
Probability Level
5.
7.
9.
Cumulative Distribution Function
Probability Level
6.
6.
9.

Bin Upper

2.3066424677e-02 1.0000000000e-01
1.0000000000e-01 2.0000000000e-01
2.0000000000e-01 6.0000000000e-01
6.0000000000e-01 1.2250968624e+00
PDF for response_fn_2:

Bin Lower Bin Upper
-3.5261164651e-01 1.0000000000e-01
1.0000000000e-01 2.0000000000e-01
2.0000000000e-01 6.0000000000e~-01
6.0000000000e-01 6.9844576220e-01

Bin Upper

.0000000000e-01
.0000000000e-01
.0000000000e-01
.4526450977e-01

response funct
Function (CDF)

0000000000e-01
0000000000e-01
0000000000e-01
(CDF)

0000000000e-01
0000000000e-01
0000000000e-01
(CDF)

0000000000e-01
0000000000e-01
0000000000e-01

Density Value
3.8994678038e+00
2.0000000000e+00
5.0000000000e-01
4.7992562123e-01

Density Value
.1046998102e+00
.0000000000e+00
.0000000000e-01
.0157877573e+00

[SENE I I

Density Value
.2469321539e+00
.0000000000e+00
.5000000000e-01
.2092363423e+00

N 9O

ion:
for response_fn_1:
Reliability Index

for response_fn_2:
Reliability Index

for response_fn_3:
Reliability Index

General Rel Index

General Rel Index

General Rel Index

Figure 5.4: Dakota response function statistics from UQ sampling example.
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Simple Correlation Matrix between input and output:
x1 x2 response_fn_1 response_fn_2 response_fn_3
x1 1.00000e+00
x2 =7.22482e-02 1.00000e+00
response_fn_1 -7.04965e-01 -6.27351e-01 1.00000e+00
response_fn_2 8.61628e-01 -5.31298e-01 -2.60486e-01 1.00000e+00
response_fn_3 -5.83075e-01 8.33989e-01 -1.23374e-01 -8.92771e-01 1.00000e+00

Partial Correlation Matrix between input and output:
response_fn_1 response_fn_2 response_fn_3

x1 =9.65994e-01 9.74285e-01 -9.49997e-01

x2 —9.58854e-01 -9.26578e-01 9.77252e-01

Simple Rank Correlation Matrix between input and output:
x1 x2 response_fn_1 response_fn_2 response_fn_3
x1 1.00000e+00
X2 —-6.66667e-02 1.00000e+00
response_fn_1 -6.60606e-01 -5.27273e-01 1.00000e+00
response_fn_2 8.18182e-01 -6.00000e-01 -2.36364e-01 1.00000e+00
response_fn_3 -6.24242e-01 7.93939e-01 -5.45455e-02 -9.27273e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fn_1 response_fn_2 response_fn_3
x1 -8.20657e-01 9.74896e-01 -9.41760e-01
x2 —=7.62704e-01 -9.50799%9e-01 9.65145e-01

Figure 5.5: Correlation results using LHS Sampling.
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active view override in the variables specification section of the Dakota input file (see Section 9.5.1). Then, instead of iterating
on only the uncertain variables, the LHS package will sample over all of the active variables. In the active all view,
continuous design and continuous state variables are treated as having uniform probability distributions within their upper and
lower bounds, discrete design and state variables are sampled uniformly from within their sets or ranges, and any uncertain
variables are sampled within their specified probability distributions.

5.2.2 Incremental Sampling

In many situations, one may run an initial sample set and then need to perform further sampling to get better estimates of
the mean, variance, and percentiles, and to obtain more comprehensive sample coverage. We call this capability incremental
sampling. Typically, a Dakota restart file (dakota.rst) would be available from the original sample, so only the newly
generated samples would need to be evaluated. Incremental sampling supports continuous uncertain variables and discrete
uncertain variables such as discrete distributions (e.g. binomial, Poisson, etc.) as well as histogram variables and uncertain set

types.

There are two cases, incremental random and incremental Latin hypercube sampling, with incremental LHS being the most
common. One major advantage of LHS incremental sampling is that it maintains the stratification and correlation structure of
the original LHS sample. That is, if one generated two independent LHS samples and simply merged them, the calculation of
the accuracy of statistical measures such as the mean and the variance would be slightly incorrect. However, in the incremental
case, the full sample (double the original size) is a Latin Hypercube sample itself and statistical measures and their accuracy
can be properly calculated. The incremental sampling capability is most useful when one is starting off with very small
samples. Once the sample size is more than a few hundred, the benefit of incremental sampling diminishes.

1. Incremental random sampling: With incremental random sampling, the original sample set with N1 samples must
be generated using sample_type = random and samples = N1. Then, the user can duplicate the Dakota in-
put file and add refinement_samples = N2 with the number of new samples N2 to be added. Random in-
cremental sampling does not require a doubling of samples each time. Thus, the user can specify any number of
refinement_samples (from an additional one sample to a large integer).

For example, if the first sample has 50 samples, and 10 more samples are desired, the second Dakota run should specify
samples = 50, refinement_samples = 10. In this situation, only 10 new samples will be generated, and
the final statistics will be reported at the end of the study both for the initial 50 samples and for the full sample of
60. The command line syntax for running the second sample is dakota —-i input60.in -r dakota.50.rst
where input60.1in is the input file with the refinement samples specification and dakota.50. rst is the restart
file containing the initial 50 samples. Note that if the restart file has a different name, that is fine; the correct restart file
name should be used.

This process can be repeated if desired,arbitrarily extending the total sample size each time, e.g, samples = 50,
refinement_samples = 10 3 73 102.

2. Incremental Latin hypercube sampling: With incremental LHS sampling, the original sample set with N1 samples
must be generated using sample_type = lhsand samples = N1. Then, the user can duplicate the Dakota input
file and add refinement_samples = N1. The sample size must double each time, so the first set of refinement
samples must be the same size as the initial set. That is, if one starts with a very small sample size of 10, then one can
use the incremental sampling capability to generate sample sizes of 20, 40, 80, etc.

For example, if the first sample has 50 samples, in the second Dakota run, the number of refinement samples should be
set to 50 for a total of 100. In this situation, only 50 new samples will be generated, and at the end of the study final
statistics will be reported both for the initial 50 samples and for the full sample of 100. The command line syntax for
running the second sample is dakota —-i inputl100.in -r dakota.50.rst, where input100.1in is the
input file with the incremental sampling specification and dakota.50. rst is the restart file containing the initial 50
samples. Note that if the restart file has a different name, that is fine; the correct restart file name should be used.

This process can be repeated if desired, doubling the total sample size each time, e.g, samples = 50, refinement_samples
= 50 100 200 400.
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5.2.3 Principal Component Analysis

As of Dakota 6.3, we added a capability to perform Principal Component Analysis on field response data when using LHS
sampling. Principal components analysis (PCA) is a data reduction method and allows one to express an ensemble of field
data with a set of principal components responsible for the spread of that data.

Dakota can calculate the principal components of the response matrix of N samples * L responses (the field response of
length L) using the keyword principal_components. The Dakota implementation is under active development: the PCA
capability may ultimately be specified elsewhere or used in different ways. For now, it is performed as a post-processing
analysis based on a set of Latin Hypercube samples.

If the user specifies LHS sampling with field data responses and also specifies principal_components, Dakota will
calculate the principal components by calculating the eigenvalues and eigenvectors of a centered data matrix. Further, if the
user specifies percent_variance_explained = 0.99, the number of components that accounts for at least 99 percent of
the variance in the responses will be retained. The default for this percentage is 0.95. In many applications, only a few principal
components explain the majority of the variance, resulting in significant data reduction. The principal components are written
to a file, princ_comp.txt. Dakota also uses the principal components to create a surrogate model by representing the
overall response as weighted sum of M principal components, where the weights will be determined by Gaussian processes
which are a function of the input uncertain variables. This reduced form then can be used for sensitivity analysis, calibration,
etc.

5.2.4 Wilks-based Sample Sizes

Most of the sampling methods require the user to specify the number of samples in advance. However, if one specifies
random sampling, one can use an approach developed by Wilks[154] to determine the number of samples that ensures a
particular confidence level in a percentile of interest. The Wilks method of computing the number of samples to execute for
a random sampling study is based on order statistics, eg considering the outputs ordered from smallest to largest [ 154, 1.
Given a probability_level, a, and confidence_level, 3, the Wilks calculation determines the minimum number
of samples required such that there is (8 * 100)% confidence that the (a * 100)%-ile of the uncertain distribution on model
output will fall below the actual (« * 100)%-ile given by the sample. To be more specific, if we wish to calculate the 95%
confidence limit on the 95" percentile, Wilks indicates that 59 samples are needed. If we order the responses and take the
largest one, that value defines a tolerance limit on the 95th percentile: we have a situation where 95% of the time, the 95"
percentile will fall at or below that sampled value. This represents a one_sided_-upper treatment applicable to the largest
output value. This treatment can be reversed to apply to the lowest output value by using the one_sided_-lower option, and
further expansion to include an interval containing both the smallest and the largest output values in the statistical statement
can be specified via the two_sided option. Additional generalization to higher order statistics, eg a statement applied to the
N largest outputs (one_sided-upper) or the N smallest and N largest outputs (two_sided), can be specified using the
order option along with value N.

5.3 Reliability Methods

Reliability methods provide an alternative approach to uncertainty quantification which can be less computationally demanding
than sampling techniques. Reliability methods for uncertainty quantification are based on probabilistic approaches that com-
pute approximate response function distribution statistics based on specified uncertain variable distributions. These response
statistics include response mean, response standard deviation, and cumulative or complementary cumulative distribution func-
tions (CDF/CCDF). These methods are often more efficient at computing statistics in the tails of the response distributions
(events with low probability) than sampling based approaches since the number of samples required to resolve a low probability
can be prohibitive.

The methods all answer the fundamental question: “Given a set of uncertain input variables, X, and a scalar response function,
g, what is the probability that the response function is below or above a certain level, Z?” The former can be written as
P[g(X) < z] = Fy4(z) where Fy(Z) is the cumulative distribution function (CDF) of the uncertain response g(X) over a set
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of response levels. The latter can be written as P[g(X) > Z] and defines the complementary cumulative distribution function
(CCDF).

This probability calculation involves a multi-dimensional integral over an irregularly shaped domain of interest, D, where
9(X) < z as displayed in Figure 5.6 for the case of two variables. The reliability methods all involve the transformation of the
user-specified uncertain variables, X, with probability density function, p(z1, z2), which can be non-normal and correlated, to
a space of independent Gaussian random variables, u, possessing a mean value of zero and unit variance (i.e., standard normal
variables). The region of interest, D, is also mapped to the transformed space to yield, Dy, , where g(U) < z as shown in
Figure 5.7. The Nataf transformation [28], which is identical to the Rosenblatt transformation [1 18] in the case of independent
random variables, is used in Dakota to accomplish this mapping. This transformation is performed to make the probability
calculation more tractable. In the transformed space, probability contours are circular in nature as shown in Figure 5.7 unlike
in the original uncertain variable space, Figure 5.6. Also, the multi-dimensional integrals can be approximated by simple
functions of a single parameter, (3, called the reliability index. 3 is the minimum Euclidean distance from the origin in the
transformed space to the response surface. This point is also known as the most probable point (MPP) of failure. Note,
however, the methodology is equally applicable for generic functions, not simply those corresponding to failure criteria; this
nomenclature is due to the origin of these methods within the disciplines of structural safety and reliability. Note that there
are local and global reliability methods. The majority of the methods available are local, meaning that a local optimization
formulation is used to locate one MPP. In contrast, global methods can find multiple MPPs if they exist.

X

PlgX)<z] = ij{}cl.xz}dx = P|(x e D)]

x=D

Figure 5.6: Graphical depiction of calculation of cumulative distribution function in the original uncertain variable
space.

5.3.1 Local Reliability Methods

The Dakota Theory Manual [24] provides the algorithmic details for the local reliability methods, including the Mean Value
method and the family of most probable point (MPP) search methods.

5.3.1.1 Method mapping

Given settings for limit state approximation, approximation order, integration approach, and other details presented to this
point, it is evident that the number of algorithmic combinations is high. Table 5.1 provides a succinct mapping for some
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uz

ul P(Xe D) = P(Ue DU)zf(B)

Figure 5.7: Graphical depiction of integration for the calculation of cumulative distribution function in the trans-
formed uncertain variable space.

Table 5.1: Mapping from Dakota options to standard reliability methods.
Order of approximation and integration
MPP search First order Second order

X_taylor_mean
u_taylor_mean
x_taylor_mpp

u_taylor_mpp

X_two_point

u_two_point
no_approx

of these combinations to common method names from the reliability literature, where blue indicates the most well-known
combinations and gray indicates other supported combinations.

Within the Dakota specification (refer to local_reliability inthe keywords section of the Reference Manual [3]) within
the Reference Manual), the MPP search and integration order selections are explicit in the method specification, but the order
of the approximation is inferred from the associated response specification (as is done with local taylor series approximations
described in Section 8.4.3.2). Thus, reliability methods do not have to be synchronized in approximation and integration order
as shown in the table; however, it is often desirable to do so.

5.3.2 Global Reliability Methods

Global reliability methods are designed to handle nonsmooth and multimodal failure surfaces, by creating global approxima-
tions based on Gaussian process models. They accurately resolve a particular contour of a response function and then estimate
probabilities using multimodal adaptive importance sampling.

The global reliability method in Dakota is called Efficient Global Reliability Analysis (EGRA) [11]. The name is due to
its roots in efficient global optimization (EGO) [86, 82]. The main idea in EGO-type optimization methods is that a global
approximation is made of the underlying function. This approximation, which is a Gaussian process model, is used to guide
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the search by finding points which maximize the expected improvement function (EIF). The EIF is used to select the location
at which a new training point should be added to the Gaussian process model by maximizing the amount of improvement in
the objective function that can be expected by adding that point. A point could be expected to produce an improvement in the
objective function if its predicted value is better than the current best solution, or if the uncertainty in its prediction is such
that the probability of it producing a better solution is high. Because the uncertainty is higher in regions of the design space
with fewer observations, this provides a balance between exploiting areas of the design space that predict good solutions, and
exploring areas where more information is needed.

The general procedure of these EGO-type methods is:

1. Build an initial Gaussian process model of the objective function.
2. Find the point that maximizes the EIF. If the EIF value at this point is sufficiently small, stop.

3. Evaluate the objective function at the point where the EIF is maximized. Update the Gaussian process model using this
new point. Go to Step 2.

Gaussian process (GP) models are used because they provide not just a predicted value at an unsampled point, but also an
estimate of the prediction variance. This variance gives an indication of the uncertainty in the GP model, which results from
the construction of the covariance function. This function is based on the idea that when input points are near one another,
the correlation between their corresponding outputs will be high. As a result, the uncertainty associated with the model’s
predictions will be small for input points which are near the points used to train the model, and will increase as one moves
further from the training points.

The expected improvement function is used in EGO algorithms to select the location at which a new training point should be
added. The EIF is defined as the expectation that any point in the search space will provide a better solution than the current
best solution based on the expected values and variances predicted by the GP model. It is important to understand how the use
of this EIF leads to optimal solutions. The EIF indicates how much the objective function value at a new potential location is
expected to be less than the predicted value at the current best solution. Because the GP model provides a Gaussian distribution
at each predicted point, expectations can be calculated. Points with good expected values and even a small variance will have a
significant expectation of producing a better solution (exploitation), but so will points that have relatively poor expected values
and greater variance (exploration).

The application of EGO to reliability analysis, however, is made more complicated due to the inclusion of equality constraints.
In forward reliability analysis, the response function appears as a constraint rather than the objective. That is, we want to
satisfy the constraint that the response equals a threshold value and is on the limit state: G(u) = z. Therefore, the EIF function
was modified to focus on feasibility, and instead of using an expected improvement function, we use an expected feasibility
function (EFF) [11]. The EFF provides an indication of how well the response is expected to satisfy the equality constraint.
Points where the expected value is close to the threshold (ue =~ Z) and points with a large uncertainty in the prediction will
have large expected feasibility values.

The general outline of the EGRA algorithm is as follows: LHS sampling is used to generate a small number of samples from
the true response function. Then, an initial Gaussian process model is constructed. Based on the EFF, the point with maximum
EFF is found using the global optimizer DIRECT. The true response function is then evaluated at this new point, and this point
is added to the sample set and the process of building a new GP model and maximizing the EFF is repeated until the maximum
EFF is small. At this stage, the GP model is accurate in the vicinity of the limit state. The GP model is then used to calculate
the probability of failure using multimodal importance sampling, which is explained below.

One method to calculate the probability of failure is to directly perform the probability integration numerically by sampling
the response function. Sampling methods can be prohibitively expensive because they generally require a large number of
response function evaluations. Importance sampling methods reduce this expense by focusing the samples in the important
regions of the uncertain space. They do this by centering the sampling density function at the MPP rather than at the mean.
This ensures the samples will lie the region of interest, thus increasing the efficiency of the sampling method. Adaptive
importance sampling (AIS) further improves the efficiency by adaptively updating the sampling density function. Multimodal
adaptive importance sampling [29] is a variation of AIS that allows for the use of multiple sampling densities making it better
suited for cases where multiple sections of the limit state are highly probable.

Note that importance sampling methods require that the location of at least one MPP be known because it is used to center
the initial sampling density. However, current gradient-based, local search methods used in MPP search may fail to converge
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or may converge to poor solutions for highly nonlinear problems, possibly making these methods inapplicable. The EGRA
algorithm described above does not depend on the availability of accurate gradient information, making convergence more
reliable for nonsmooth response functions. Moreover, EGRA has the ability to locate multiple failure points, which can
provide multiple starting points and thus a good multimodal sampling density for the initial steps of multimodal AIS. The
probability assessment using multimodal AIS thus incorporates probability of failure at multiple points.

5.3.3 Uncertainty Quantification Examples using Reliability Analysis

In summary, the user can choose to perform either forward (RIA) or inverse (PMA) mappings when performing a reliability
analysis. With either approach, there are a variety of methods from which to choose in terms of limit state approximations
(MVFOSM, MVSOSM, x-/u-space AMV, x-/u-space AMV?, x-/u-space AMV+, x-/u-space AMV?+, x-/u-space TANA, and
FORM/SORM), probability integrations (first-order or second-order), limit state Hessian selection (analytic, finite difference,
BFGS, or SR1), and MPP optimization algorithm (SQP or NIP) selections.

All reliability methods output approximate values of the CDF/CCDF response-probability-reliability levels for prescribed
response levels (RIA) or prescribed probability or reliability levels (PMA). In addition, mean value methods output estimates
of the response means and standard deviations as well as importance factors that attribute variance among the set of uncertain
variables (provided a nonzero response variance estimate).

5.3.3.1 Mean-value Reliability with Textbook

Figure 5.8 shows the Dakota input file for an example problem that demonstrates the simplest reliability method, called the
mean value method (also referred to as the Mean Value First Order Second Moment method). It is specified with method
keyword local_reliability. This method calculates the mean and variance of the response function based on informa-
tion about the mean and variance of the inputs and gradient information at the mean of the inputs. The mean value method
is extremely cheap computationally (only five runs were required for the textbook function), but can be quite inaccurate, es-
pecially for nonlinear problems and/or problems with uncertain inputs that are significantly non-normal. More detail on the
mean value method can be found in the Local Reliability Methods section of the Dakota Theory Manual [24], and more detail
on reliability methods in general (including the more advanced methods) is found in Section 5.3.

Example output from the mean value method is displayed in Figure 5.9. Note that since the mean of both inputs is 1, the mean
value of the output for response 1 is zero. However, the mean values of the constraints are both 0.5. The mean value results
indicate that variable x1 is more important in constraint 1 while x2 is more important in constraint 2, which is the case based
on Equation 20.1. The importance factors are not available for the first response as the standard deviation is zero.

5.3.3.2 FORM Reliability with Lognormal Ratio

This example quantifies the uncertainty in the “log ratio” response function:

T1
g(x1,22) = — 5.1
)
by computing approximate response statistics using reliability analysis to determine the response cumulative distribution
function:

Plg(z1,22) < Z] (5.2)

where X and X are identically distributed lognormal random variables with means of 1, standard deviations of 0.5, and
correlation coefficient of 0. 3.

A Dakota input file showing RIA using FORM (option 7 in limit state approximations combined with first-order integration)
is listed in Figure 5.10. The user first specifies the local_reliability method, followed by the MPP search approach
and integration order. In this example, we specify mpp_search no_approx and utilize the default first-order integration
to select FORM. Finally, the user specifies response levels or probability/reliability levels to determine if the problem will
be solved using an RIA approach or a PMA approach. In the example figure of 5.10, we use RIA by specifying a range
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# Dakota Input File: textbook_ug meanvalue.in

environment

method
local_reliability

interface
analysis_drivers = ’'text_book’
fork asynchronous

variables
lognormal_uncertain = 2
means = 1.
std_deviations = 0.5
descriptors = JTFlln’
responses
response_functions = 3

numerical_gradients
method_source dakota
interval_type central
fd_gradient_step_size = l.e-4
no_hessians

1.
0.5
"TF21n’

Figure 5.8: Mean Value Reliability Method:

the Dakota input file — see dakota/share/dakota/
examples/users/textbook_ug_meanvalue.in

MV Statistics for response_fn_1:
Approximate Mean Response

Approximate Standard Deviation of Response

Importance Factors not available.
MV Statistics for response_fn_2:
Approximate Mean Response

Approximate Standard Deviation of Response =

Importance Factor for TFlln
Importance Factor for TF2ln
MV Statistics for response_fn_3:

Approximate Mean Response

Approximate Standard Deviation of Response =

Importance Factor for TFlln
Importance Factor for TF21n

= 0.0000000000e+00
= 0.0000000000e+00

.0000000000e-01
.0307764064e+00
.4117647059e-01
.8823529412e-02

Il
[Ny

.0000000000e-01
.0307764064e+00
.8823529412e-02
.4117647059e-01

|
O U= U

Figure 5.9: Results of the Mean Value Method on the Textbook Function
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of response_levels for the problem. The resulting output for this input is shown in Figure 5.11, with probability and
reliability levels listed for each response level. Figure 5.12 shows that FORM compares favorably to an exact analytic solution
for this problem. Also note that FORM does have some error in the calculation of CDF values for this problem, but it is a
very small error (on the order of e-11), much smaller than the error obtained when using a Mean Value method, which will be
discussed next.

# Dakota Input File: logratio_ug reliability.in
environment

method
local_reliability
mpp_search no_approx
response_levels = .4 .5 .55 .6 .65 .7
.75 .8 .85 .9 1. 1.05 1.15 1.2 1.25 1.3
1.35 1.4 1.5 1.55 1.6 1.65 1.7 1.75

variables
lognormal_uncertain = 2
means = 1
std_deviations = 0.
initial_point = 0
descriptors = T
uncertain_correlation_mat

interface
analysis_drivers = ’log_ratio’
direct
# fork asynch

responses
response_functions = 1
numerical_gradients
method_source dakota
interval_type central
fd_step_size = 1l.e-4
no_hessians

Figure 5.10: Dakota input file for Reliability UQ example using FORM - see dakota/share/dakota/
examples/users/logratio_uqg_reliability.in

If the user specifies local_reliability as a method with no additional specification on how to do the MPP search (for
example, by commenting out mpp_search no_approx in Figure 5.10), then no MPP search is done: the Mean Value
method is used. The mean value results are shown in Figure 5.13 and consist of approximate mean and standard deviation
of the response, the importance factors for each uncertain variable, and approximate probability/reliability levels for the pre-
scribed response levels that have been inferred from the approximate mean and standard deviation (see Mean Value section in
Reliability Methods Chapter of Dakota Theory Manual [24]). It is evident that the statistics are considerably different from
the fully converged FORM results; however, these rough approximations are also much less expensive to calculate. The im-
portance factors are a measure of the sensitivity of the response function(s) to the uncertain input variables. A comparison of
the mean value results with the FORM results is shown in Figure 5.12. The mean value results are not accurate near the tail
values of the CDF, and can differ from the exact solution by as much as 0.11 in CDF estimates. A comprehensive comparison
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Cumulative Distribution Function

FRPRPPRPRPRRERRRRRPRRRPROODOD-I-Ioo U0

Response Level

.0000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.0000000000e+00
.0500000000e+00
.1500000000e+00
.2000000000e+00
.2500000000e+00
.3000000000e+00
.3500000000e+00
.4000000000e+00
.5000000000e+00
.5500000000e+00
.6000000000e+00
.6500000000e+00
.7000000000e+00
.7500000000e+00

(CDF)

Probability Level

O 00 0 00 ~J J JJ o oo o U Ul b wwwdhdhNhRFE R P b

.7624085962e-02
.0346525475e-01
.3818404972e-01
.7616275822e-01
.1641741368e-01
.5803428381e-01
.0020938124e-01
.4226491013e-01
.8365052982e-01
.2393548232e-01
.0000000000e-01
.3539344228e-01
.0043460094e-01
.3004131827e-01
.5773508987e-01
.8356844630e-01
.0761025532e-01
.2994058691e-01
.6981945355e-01
.8755158269e-01
.0393505584e-01
.1906005158e-01
.3301386860e-01
.4588021938e-01

for response_fn_1:
Reliability Index
.6683404020e+00
.2620507942e+00
.0885143628e+00
.3008801339%9e-01
.8434989943e-01
.4941748143e-01
.2379840558e-01
.0628960782e-01
.9590705956e-01
.9183562480e-01
.8682233460e-12
.8834907167e-02
.5447217462e-01
.3196278078e-01
.0628960782e-01
.7770089473e-01
.4641676380e-01
.1263331274e-01
.3825238860e-01
.9795460350e-01
.5576118635e-01
.1178881995e-01
.6614373461e-01
.0189229206e+00

Figure 5.12: Comparison of the cumulative distribution function (CDF) computed by FORM, the Mean Value
method, and the exact CDF for g(z1, z2) =

Figure 5.11: Output from Reliability UQ example using FORM.
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of various reliability methods applied to the logratio problem is provided in [36].

MV Statistics for response_fn_1:
Approximate Mean Response

Importance Factor for TFlln
Importance Factor for TF2ln

Importance Factor for TFlln TF21n

Cumulative Distribution Function

FRPRPRRPRPRRPRERERRERRRR OO0 00

Response Level

.0000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01
.5000000000e-01
.0000000000e-01

(CDF)

Probability Level

.5524721837e-01
.9901236093e-01
.2343641149%9e-01
.4948115037e-01
.7705656603e-01
.0604494093e-01
.3630190949e-01
.6765834596e-01
.9992305332e-01
.3288618783e-01

QO 00 O 00 O 0 ~J ~J OO 6 OO O Ul U v W W W w NN NRFE -

.0000000000e+00 .0000000000e-01
.0500000000e+00 .3367668035e-01
.1500000000e+00 .0007694668e-01
.2000000000e+00 .3234165404e-01
.2500000000e+00 .6369809051e-01
.3000000000e+00 .9395505907e-01
.3500000000e+00 .2294343397e-01
.4000000000e+00 .5051884963e-01
.5000000000e+00 .0098763907e-01
.5500000000e+00 .2372893005e-01
.6000000000e+00 .4475278163e-01
.6500000000e+00 .6405064339%9e-01
.7000000000e+00 .8163821351e-01
.7500000000e+00 .9755305196e-01

for

Reliability Index

OO N W ooy 00

|
\S)

-3.
-4.
-5.
-5.
-6.
-8.
-9.
-1.
-1.
-1.
-1.

1
Approximate Standard Deviation of Response = 5.
7.1428570714e-01
= 7.
= —4.

.0000000000e+00

9160798127e-01

1428572143e-01
2857142857e-01

response_fn_1:

General Rel Index

.0141851006e+00 1.0141851006e+00
.4515425050e-01 8.4515425050e-01
.6063882545e-01 7.6063882545e-01
.7612340040e-01 6.7612340040e-01
.9160797535e-01 5.9160797535e-01
.0709255030e-01 5.0709255030e-01
.2257712525e-01 4.2257712525e-01
.3806170020e-01 3.3806170020e-01
.5354627515e-01 2.5354627515e-01
.6903085010e-01 1.6903085010e-01
.0000000000e+00 0.0000000000e+00
.4515425050e-02 -8.4515425050e-02
.5354627515e-01 -2.5354627515e-01
3806170020e-01 -3.3806170020e-01
2257712525e-01 -4.2257712525e-01
0709255030e-01 -5.0709255030e-01
9160797535e-01 -5.9160797535e-01
7612340040e-01 -6.7612340040e-01
4515425050e-01 -8.4515425050e-01
2966967555e-01 -9.2966967555e-01
0141851006e+00 -1.0141851006e+00
0987005257e+00 -1.0987005257e+00
1832159507e+00 -1.1832159507e+00
2677313758e+00 -1.2677313758e+00

Figure 5.13: Output from Reliability UQ example using mean value.

Additional reliability analysis and design results are provided in Sections 20.10.1-20.10.5.

5.4 Stochastic Expansion Methods

The development of these techniques mirrors that of deterministic finite element analysis through the utilization of the con-
cepts of projection, orthogonality, and weak convergence. The polynomial chaos expansion is based on a multidimensional
orthogonal polynomial approximation and the stochastic collocation approach is based on a multidimensional interpolation
polynomial approximation, both formed in terms of standardized random variables. A distinguishing feature of these two
methodologies is that the final solution is expressed as a functional mapping, and not merely as a set of statistics as is the
case for many other methodologies (sampling, reliability, et al.). This makes these techniques particularly attractive for use
in multi-physics applications which link different analysis packages. The first stochastic expansion method is the polyno-
]. For smooth functions (i.e., analytic, infinitely-differentiable) in L? (i.e., possessing
finite variance), exponential convergence rates can be obtained under order refinement for integrated statistical quantities of

mial chaos expansion (PCE) [

tl
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interest such as mean, variance, and probability. Dakota implements the generalized PCE approach using the Wiener-Askey
scheme [157], in which Hermite, Legendre, Laguerre, Jacobi, and generalized Laguerre orthogonal polynomials are used for
modeling the effect of continuous random variables described by normal, uniform, exponential, beta, and gamma probability
distributions, respectively'. These orthogonal polynomial selections are optimal for these distribution types since the inner
product weighting function corresponds’ to the probability density functions for these continuous distributions. Orthogonal
polynomials can be computed for any positive weight function, so these five classical orthogonal polynomials may be aug-
mented with numerically-generated polynomials for other probability distributions (e.g., for lognormal, extreme value, and
histogram distributions). When independent standard random variables are used (or computed through transformation), the
variable expansions are uncoupled, allowing the polynomial orthogonality properties to be applied on a per-dimension basis.
This allows one to mix and match the polynomial basis used for each variable without interference with the spectral projection
scheme for the response.

In non-intrusive PCE, simulations are used as black boxes and the calculation of chaos expansion coefficients for response
metrics of interest is based on a set of simulation response evaluations. To calculate these response PCE coefficients, two
classes of approaches are available: spectral projection and regression. The spectral projection approach projects the response
against each basis function using inner products and employs the polynomial orthogonality properties to extract each coeffi-
cient. Each inner product involves a multidimensional integral over the support range of the weighting function, which can be
evaluated numerically using sampling, tensor-product quadrature, Smolyak sparse grid [128], or cubature [132] approaches.
The regression approach finds a set of PCE coefficients which best match a set of response values obtained from either a design
of computer experiments (“point collocation” [149]) or from a randomly selected subset of tensor Gauss points (“probabilistic
collocation” [139]). Various methods can be used to solve the resulting linear system, including least squares methods for
over-determined systems and compressed sensing methods for under-determined systems. Details of these methods are docu-
mented in the Linear regression section of the Dakota Theory Manual [24] and the necessary specifications needed to activate
these techniques are listed in the keyword section of the Dakota Reference Manual [3].

Stochastic collocation (SC) is another stochastic expansion technique for UQ that is closely related to PCE. As for PCE,
exponential convergence rates can be obtained under order refinement for integrated statistical quantities of interest, provided
that the response functions are smooth with finite variance. The primary distinction is that, whereas PCE estimates coefficients
for known multivariate orthogonal polynomial basis functions, SC forms multivariate interpolation polynomial basis functions
for known coefficients. The interpolation polynomials may be either local or global and either value-based or gradient-
enhanced (four combinations: Lagrange interpolation, Hermite interpolation, piecewise linear spline, and piecewise cubic
spline), and may be used within nodal or hierarchical interpolation formulations. Interpolation is performed on structured
grids such as tensor-product or sparse grids. Starting from a tensor-product multidimensional interpolation polynomial in the
value-based case (Lagrange or piecewise linear spline), we have the feature that the ‘" interpolation polynomial has a value
of 1 at collocation point ¢ and a value of 0 for all other collocation points, leading to the use of expansion coefficients that are
just the response values at each of the collocation points. In the gradient-enhanced case (Hermite or piecewise cubic spline),
SC includes both “type 1" and “type 2” interpolation polynomials, where the former interpolate the values while producing
zero gradients and the latter interpolate the gradients while producing zero values (refer to [24] for additional details). Sparse
interpolants are weighted sums of these tensor interpolants; however, they are only interpolatory for sparse grids based on fully
nested rules and will exhibit some interpolation error at the collocation points for sparse grids based on non-nested rules. A
key to maximizing performance with SC is performing collocation using the Gauss points and weights from the same optimal
orthogonal polynomials used in PCE. For use of standard Gauss integration rules (not nested variants such as Gauss-Patterson
or Genz-Keister) within tensor-product quadrature, tensor PCE expansions and tensor SC interpolants are equivalent in that
identical polynomial approximations are generated [21]. Moreover, this equivalence can be extended to sparse grids based on
standard Gauss rules, provided that a sparse PCE is formed based on a weighted sum of tensor expansions [19].

The Dakota Theory Manual [24] provides full algorithmic details for the PCE and SC methods.

A recent addition is functional tensor train (FTT) expansions which leverage concepts from data/image compression using
products of dimensional basis “cores.” When the response admits a “low rank” representation, this means that the size of
the cores required for an accurate recovery is not large and a compressed format for the expansion can be achieved based
on a tensor train composition. In Dakota, the basis functions used within the core for each random dimension are univariate
orthogonal polynomials, similar to PCE. Solution for the expansion coefficients is based on regression and employs a numerical

!Orthogonal polynomial selections also exist for discrete probability distributions, but are not yet supported in Dakota.
2Identical support range; weight differs by at most a constant factor.
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solution of a regularized nonlinear least squares problem. Both the rank and polynomial order per dimension are resolution
controls for the method, and cross-validation procedures are provided to automate the selection of the best settings for a given
response data set. Additional FTT theory will be provided in future releases as this capability is promoted to a default part of
the Dakota software configuration.

Finally, advanced multilevel and multifidelity approaches are provided for PCE, SC, and FT, as described in the Reference

Manual [3] (refertomultilevel polynomial_chaos, multifidelity_polynomial_chaos, multilevel_function_train
multifidelity_function_train and multifidelity_stoch_collocation). These approaches decompose

the input-output mapping and form multiple expansions in order to reduce reliance on the most expensive computational

models by integrating information from low cost modeling alternatives.

5.4.1 Uncertainty Quantification Examples using Stochastic Expansions
5.4.1.1 Polynomial Chaos Expansion for Rosenbrock

A typical Dakota input file for performing an uncertainty quantification using PCE is shown in Figure 5.14. In this example, we
compute CDF probabilities for six response levels of Rosenbrock’s function. Since Rosenbrock is a fourth order polynomial
and we employ a fourth-order expansion using an optimal basis (Legendre for uniform random variables), we can readily obtain
a polynomial expansion which exactly matches the Rosenbrock function. In this example, we select Gaussian quadratures
using an anisotropic approach (fifth-order quadrature in z; and third-order quadrature in x2), resulting in a total of 15 function
evaluations to compute the PCE coefficients.

The tensor product quadature points upon which the expansion is calculated are shown in Figure 5.15. The tensor product
generates all combinations of values from each individual dimension: it is an all-way pairing of points.

Once the expansion coefficients have been calculated, some statistics are available analytically and others must be evaluated
numerically. For the numerical portion, the input file specifies the use of 10000 samples, which will be evaluated on the
expansion to compute the CDF probabilities. In Figure 5.16, excerpts from the results summary are presented, where we first
see a summary of the PCE coefficients which exactly reproduce Rosenbrock for a Legendre polynomial basis. The analytic
statistics for mean, standard deviation, and COV are then presented. For example, the mean is 455.66 and the standard
deviation is 606.56. The moments are followed by global sensitivity indices (Sobol’ indices).This example shows that variable
x1 has the largest main effect (0.497) as compared with variable x2 (0.296) or the interaction between x1 and x2 (0.206). After
the global sensitivity indices, the local sensitivities are presented, evaluated at the mean values. Finally, we see the numerical
results for the CDF probabilities based on 10000 samples performed on the expansion. For example, the probability that the
Rosenbrock function is less than 100 over these two uncertain variables is 0.342. Note that this is a very similar estimate to
what was obtained using 200 Monte Carlo samples, with fewer true function evaluations.

5.4.1.2 Uncertainty Quantification Example using Stochastic Collocation

Compared to the previous PCE example, this section presents a more sophisticated example, where we use stochastic colloca-
tion built on an anisotropic sparse grid defined from numerically-generated orthogonal polynomials. The uncertain variables
are lognormal in this example and the orthogonal polynomials are generated from Gauss-Wigert recursion coefficients [125]
in combination with the Golub-Welsch procedure [66]. The input file is shown in Figure 5.17. Note that the dimension prefer-
ence of (2, 1) is inverted to define a v weighting vector of (0.5, 1) (and «y of 0.5) for use in the anisotropic Smolyak index set
constraint (see Smolyak sparse grids section in Stochastic Expansion Methods chapter in Dakota Theory Manual [24]). In this
example, we compute CDF probabilities for six response levels of Rosenbrock’s function. This example requires 19 function
evaluations to calculate the interpolating polynomials in stochastic collocation and the resulting expansion exactly reproduces
Rosenbrock’s function. The placement of the points generated by the sparse grid is shown in Figure 5.18.

Once the expansion coefficients have been calculated, some statistics are available analytically and others must be evaluated
numerically. For the numerical portion, the input file specifies the use of 10000 samples, which will be evaluated on the
expansion to compute the CDF probabilities. In Figure 5.19, excerpts from the results summary are presented. We first see
the moment statistics for mean, standard deviation, skewness, and kurtosis computed by numerical integration (see Analytic
moments section in Stochastic Expansion Methods chapter in Dakota Theory Manual [24]), where the numerical row corre-
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# Dakota Input File: rosen_ug_pce.in
environment

method
polynomial_chaos
quadrature_order = 5
dimension_preference = 5 3
samples_on_emulator = 10000
seed = 12347
response_levels = .1 1. 50. 100. 500. 1000.
variance_based_decomp #interaction_order =1

variables
uniform_uncertain = 2
lower_bounds = =2. 2.
upper_bounds = 2. 2.
descriptors = 'x1’" ’"x2’'

interface
analysis_drivers = ’rosenbrock’
direct

responses
response_functions = 1
no_gradients
no_hessians

Figure 5.14: Dakota input file for performing UQ using polynomial chaos expansions — see dakota/share/
dakota/examples/users/rosen_ug pce.in

) rosenbrock

TP Gauss. pts | Y

HTARERRRRR R

Figure 5.15: Rosenbrock polynomial chaos example: tensor product quadrature points.
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Polynomial Chaos coefficients for response_fn_1:
coefficient ul u2
4.5566666667e+02 PO PO
-4.0000000000e+00 Pl PO
9.1695238095e+02 P2 PO
-9.9475983006e-14 P3 PO
3.6571428571e+02 P4 PO
-5.3333333333e+02 PO P1
-3.9968028887e-14 Pl P1
-1.0666666667e+03 P2 Pl
-3.3573144265e-13 P3 Pl
1.2829737273e-12 P4 P1
2.6666666667e+02 PO P2
2.2648549702e-13 Pl P2
4.8849813084e-13 P2 P2
2.8754776338e-13 P3 P2
2.8477220582e-13 P4 P2

Statistics derived analytically from polynomial expansion:

Moment-based statistics for each response function:

Mean Std Dev Skewness

response_fn_1
expansion:

numerical:

4.5566666667e+02 6.0656024184e+02

Covariance among response functions:
[[ 3.6791532698e+05 1]

response_fn_1:
[ -2.0000000000e+00 2.4055757386e-13 ]

Kurtosis

4.5566666667e+02 6.0656024184e+02 1.9633285271e+00 3.3633861456e+00

Local sensitivities for each response function evaluated at uncertain variable means:

Bin Lower

Main Total
4.9746891383e-01 7.0363551328e-01 x1
2.9636448672e-01 5.0253108617e-01 x2

Interaction

Global sensitivity indices for each response function:
response_fn_1 Sobol indices:

2.0616659946e-01 x1 x2

Level mappings for each
Cumulative Distribution

Bin Upper

response function:

Function (CDF)

Density Value

6.8311107124e-03 1.0000000000e-01 2.0393073423e-02
1.0000000000e-01 1.0000000000e+00 1.3000000000e-02
1.0000000000e+00 5.0000000000e+01 4.7000000000e-03
5.0000000000e+01 1.0000000000e+02 1.9680000000e-03
1.0000000000e+02 5.0000000000e+02 9.2150000000e-04
5.0000000000e+02 1.0000000000e+03 2.8300000000e-04
1.0000000000e+03 3.5755437782e+03 5.7308286215e-05

for response_fn_1:

1.0000000000e-01 1.9000000000e-03
1.0000000000e+00 1.3600000000e-02
5.0000000000e+01 2.4390000000e-01
1.0000000000e+02 3.4230000000e-01
5.0000000000e+02 7.1090000000e-01
1.0000000000e+03 8.5240000000e-01

Statistics based on 10000 samples performed on polynomial expansion:

Probability Density Function (PDF) histograms for each response function:
PDF for response_fn_1:

Figure 5.16: Excerpt of UQ output for polynomial chaos example.

Dakota Version 6.15 User’s Manual generated on November 10, 2021



90

CHAPTER 5. UNCERTAINTY QUANTIFICATION CAPABILITIES

# Dakota Input File:
environment

method

stoch_collocation
sparse_grid_level
dimension_prefere
samples_on_emulat
response_levels
variance_based_de

output silent

variables

means
std_deviations
descriptors

lognormal_uncertain =

rosen_udg_sc.in

=3
nce = 2 1
or = 10000 seed = 12347

.1 1. 50. 100. 500. 1000.

comp #interaction_order 1

1.
0.5
= "x1’

1.
0.5
2

interface

analysis_drivers "rosenbrock’

direct

responses
response_functions
no_gradients
no_hessians

1

Figure 5.17: Dakota input file for performing UQ using stochastic collocation — see dakota/share/dakota/
examples/users/rosen_uqg_sc.in

® Collocation Pts

05 i | i
0 10 15 20 25

X1

30

Figure 5.18: Rosenbrock stochastic collocation example: sparse grid points.
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sponds to integration using the original response values and the expansion row corresponds to integration using values from
the interpolant. The response covariance (collapsing to a single variance value for one response function) and global sensitivity
indices (Sobol’ indices) are presented next. This example shows that variable x1 has the largest main effect (0.99) as com-
pared with variable x2 (0.0007) or the interaction between x1 and x2 (0.005). Finally, we see the numerical results for the CDF
probabilities based on 10000 samples performed on the expansion. For example, the probability that the Rosenbrock function
is less than 100 is 0.7233. Note that these results are significantly different than the ones presented in Section 5.4.1.1 because
of the different assumptions about the inputs: uniform[-2,2] versus lognormals with means of 1.0 and standard deviations of
0.5.

Statistics derived analytically from polynomial expansion:

Moment-based statistics for each response function:

Mean Std Dev Skewness Kurtosis

response_fn_1
expansion: 2.5671972656e+02 2.0484189184e+03 2.7419241630e+02 1.9594567379e+06
numerical: 2.5671972656e+02 2.0484189184e+03 2.7419241630e+02 1.9594567379e+06

Covariance among response functions:
[[ 4.1960200651e+06 1]

Global sensitivity indices for each response function:
response_fn_1 Sobol indices:

Main Total
9.9391978710e-01 9.9928724777e-01 x1
7.1275222945e-04 6.0802128961e-03 x2

Interaction
5.3674606667e-03 x1 x2

Statistics based on 10000 samples performed on polynomial expansion:

Level mappings for each response function:
Cumulative Distribution Function (CDF) for response_fn_1:
Response Level Probability Level Reliability Index General Rel Index

1.0000000000e-01 1.8100000000e-02
1.0000000000e+00 8.7800000000e-02
5.0000000000e+01 5.8410000000e-01
1.0000000000e+02 7.2330000000e-01
5.0000000000e+02 9.2010000000e-01
1.0000000000e+03 9.5660000000e-01

Figure 5.19: Excerpt of UQ output for stochastic collocation example.

5.5 Importance Sampling Methods

Importance sampling is a method that allows one to estimate statistical quantities such as failure probabilities (e.g. the prob-
ability that a response quantity will exceed a threshold or fall below a threshold value) in a way that is more efficient than
Monte Carlo sampling. The core idea in importance sampling is that one generates samples that preferentially samples impor-
tant regions in the space (e.g. in or near the failure region or user-defined region of interest), and then appropriately weights
the samples to obtain an unbiased estimate of the failure probability [130]. In importance sampling, the samples are generated
from a density which is called the importance density: it is not the original probability density of the input distributions. The
importance density should be centered near the failure region of interest. For black-box simulations such as those commonly
interfaced with Dakota, it is difficult to specify the importance density a priori: the user often does not know where the failure
region lies, especially in a high-dimensional space. [135]
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More formally, we define the objective of importance sampling as calculating the probability, P, that the output will exceed a
threshold level. This is a failure probability, where the failure probability is defined as some scalar function, y (X), exceeding
a threshold, 7', where the inputs, X, are randomly distributed with density, p (X). When evaluating y (X) is sufficiently
expensive or P is sufficiently small, Monte Carlo (MC) sampling methods to estimate P will be infeasible due to the large
number of function evaluations required for a specified accuracy.

The probability of failure can be thought of as the mean rate of occurrence of failure. The Monte Carlo (MC) estimate of P is

therefore the sample mean of the indicator function, I (X),

L
N 7

M=

Puc =+ S I(Xi) X~ p(X), 5.3)

1
where N samples, Xj, are drawn from p (X), and the indicator function I (X) is 1 if failure occurs and zero otherwise.

Importance sampling draws samples from the importance density p’ (X) and scales the sample mean by the importance density:

1 ¢ p(Xi)
Prs = — <I X; - ) X~ p (X). 5.4
v 2 (10 £y (X)
This reduces the asymptotic error variance from:
E[(I(X) - P)*
Oerrme = % (55
to
2
] E {(1 (X) 28 P) }
Oerrrs = N . (5.6)
Inspection of Eq. 5.6 reveals oz, = 0if p’ (X) equals the ideal importance density p* (X),
. I1(X)p(X
P (X) = %. 5.7)

However, p* (X) is unknown a priori because I (X) is only known where it has been evaluated. Therefore, the required P in
the denominator is also unknown: this is what we are trying to estimate.

If importance sampling is to be effective, the practitioner must be able to choose a good p’ (X) without already knowing
I (X) everywhere. There is a danger: a poor choice for p’ (X) can put most of the samples in unimportant regions and make
o2, ¢ much greater than o2, wo- In particular, importance sampling can be challenging for very low probability events in
high-dimensional spaces where the output y is calculated by a simulation. In these cases, usually one does not know anything
a priori about where the failure region exists in input space. We have developed two importance sampling approaches which
do not rely on the user explicitly specifying an importance density.

5.5.1 Importance Sampling Method based on Reliability Approach

The first method is based on ideas in reliability modeling 5.3.1. An initial Latin Hypercube sampling is performed to generate
an initial set of samples. These initial samples are augmented with samples from an importance density as follows: The
variables are transformed to standard normal space. In the transformed space, the importance density is a set of normal
densities centered around points which are in the failure region. Note that this is similar in spirit to the reliability methods, in
which importance sampling is centered around a Most Probable Point (MPP). In the case of the LHS samples, the importance
sampling density will simply by a mixture of normal distributions centered around points in the failure region.

This method is specified by the keyword importance_sampling. The options for importance sampling are as follows:
import centers a sampling density at one of the initial LHS samples identified in the failure region. It then generates the
importance samples, weights them by their probability of occurence given the original density, and calculates the required
probability (CDF or CCDF level). adapt_import is the same as import but is performed iteratively until the failure
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probability estimate converges. mm_adapt_import starts with all of the samples located in the failure region to build a
multimodal sampling density. First, it uses a small number of samples around each of the initial samples in the failure region.
Note that these samples are allocated to the different points based on their relative probabilities of occurrence: more probable
points get more samples. This early part of the approach is done to search for “representative” points. Once these are located,
the multimodal sampling density is set and then the multi-modal adaptive method proceeds similarly to the adaptive method
(sample until convergence).

5.5.2 Gaussian Process Adaptive Importance Sampling Method

The second importance sampling method in Dakota is the one we recommend, at least for problems that have a relatively
small number of input variables (e.g. less than 10). This method, Gaussian Process Adaptive Importance Sampling, is outlined
in the paper [23]. This method starts with an initial set of LHS samples and adds samples one at a time, with the goal
of adaptively improving the estimate of the ideal importance density during the process. The approach uses a mixture of
component densities. An iterative process is used to construct the sequence of improving component densities. At each
iteration, a Gaussian process (GP) surrogate is used to help identify areas in the space where failure is likely to occur. The
GPs are not used to directly calculate the failure probability; they are only used to approximate the importance density. Thus,
the Gaussian process adaptive importance sampling algorithm overcomes limitations involving using a potentially inaccurate
surrogate model directly in importance sampling calculations.

This method is specified with the keyword gpais. There are three main controls which govern the behavior of the algorithm.
samples specifies the initial number of Latin Hypercube samples which are used to create the initial Gaussian process
surrogate. emulator_samples specifies the number of samples taken on the latest Gaussian process model each iteration
of the algorithm. These samples are used in the construction of the next importance sampling density. The default is 10,000
samples. The third control is max_iterations, which controls the number of iterations of the algorithm. Each iteration,
one additional sample of the “true” simulation is taken. Thus, if samples were set at 100 and max_iterations were set
to 200, there would be a total of 300 function evaluations of the simulator model taken.

5.6 Adaptive Sampling Methods

The goal in performing adaptive sampling is to construct a surrogate model that can be used as an accurate predictor to some
expensive simulation, thus it is to one’s advantage to build a surrogate that minimizes the error over the entire domain of
interest using as little data as possible from the expensive simulation. The adaptive part alludes to the fact that the surrogate
will be refined by focusing samples of the expensive simulation on particular areas of interest rather than rely on random
selection or standard space-filling techniques.

5.6.1 Adaptive sampling based on surrogates

At a high-level, the adaptive sampling pipeline is a four-step process:

1. Evaluate the expensive simulation (referred to as the true model) at initial sample points
2. Fit/refit a surrogate model
3. Create a candidate set and score based on information from surrogate

4. Select a candidate point to evaluate the true model and Repeat 2-4

In terms of the Dakota implementation, the adaptive sampling method currently uses Latin Hypercube sampling (LHS) to
generate the initial points in Step 1 above. For Step 2, we use a Gaussian process model. The user can specify the scoring
metric used to select the next point (or points) to evaluate and add to the set. We have investigated several scoring metrics
with which to evaluate candidate points for Step 3. There are some classical ones such as distance (e.g. add a point which
maximizes the minimum distance to all of the existing points). This distance metric tends to generate points that are space-
filling. We have investigated several methods that involve interesting topological features of the space (e.g. points that are
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near saddle points). These are an area of active investigation but are not currently included in Dakota. The fitness metrics for
scoring candidate points currently include:

Predicted Variance First introduced in [100] and later used in [124], this method uses the predicted variance of the Gaussian
process surrogate as the score of a candidate point. Thus, the adaptively chosen points will be in areas of highest
uncertainty according to the Gaussian process model.

Distance A candidate’s score is the Euclidean distance in domain space between the candidate and its nearest neighbor in the
set of points already evaluated on the true model. Therefore, the most undersampled area of the domain will always be
selected. The adaptivity of this method could be brought to question as it would chose the exact same points regardless
of the surrogate model used. However, it is useful to use to compare other adaptive metrics to one that relies purely on
space-filling in an equivalent context.

Gradient Similar to the above metric, a candidate’s nearest neighbor is determined as in the distance metric, only now the
score is the absolute value of the difference in range space of the two points. The range space values used are predicted
from the surrogate model. Though this method is called the gradient metric, it actually does not take into account how
close the candidate and its neighbor are in domain space. This method attempts to evenly fill the range space of the
surrogate.

Note that in our approach, a Latin Hypercube sample is generated (a new one, different from the initial sample) and the
surrogate model is evaluated at this points. These are the “candidate points” that are then evaluated according to the fitness
metric outlined above. The number of candidates used in practice should be high enough to fill most of the input domain: we
recommend at least hundreds of points for a low- dimensional problem. All of the candidates (samples on the emulator) are
given a score and then the highest-scoring candidate is selected to be evaluated on the true model.

The adaptive sampling method also can generate batches of points to add at a time. With batch or multi-point selection, the
true model can be evaluated in parallel and thus increase throughput before refitting our surrogate model. This proposes a new
challenge as the problem of choosing a single point and choosing multiple points off a surrogate are fundamentally different.
Selecting the n best scoring candidates is more than likely to generate a set of points clustered in one area which will not be
conducive to adapting the surrogate. We have implemented several strategies for batch selection of points:

Naive Selection This strategy will select the n highest scoring candidates regardless of their position. This tends to group an
entire round of points in the same area.

Distance Penalized Re-weighted Scoring In this strategy, the highest scoring candidate is selected and then all remaining
candidates are re-scored with a distance penalization factor added in to the score. Only points selected within a round
are used for the distance penalization. The factor is the same as used in the distance penalization scoring metrics from
[101]. First, compute all of the minimum distances from each remaining candidate to the selected candidates. Then,
determine the median value of these distances. If the smallest distance, d, between a point and the selected set is less
than the computed median distance its score is unaltered, otherwise the score is multiplied by a value p determined by
the following equation:

p=15%xd—05xd° (5.8)

Topological Maxima of Scoring Function In this strategy we look at the topology of the scoring function and select the n
highest maxima in the topology. To determine local maxima, we construct the approximate Morse-Smale complex. If
the number of local maxima is less than n, we revert to the distance strategy above. As a further extension, one may
want to filter low-persistence maxima, but to keep the framework general, we chose to omit this feature as defining a
threshold for what deems a critical point as “low persistence” can vary drastically from problem to problem.

Constant Liar We adapt the constant liar strategy presented in [60] with the scoring metrics. The strategy first selects the
highest scoring candidate, and then refits the surrogate using a “lie” value at the point selected and repeating until n
points have been selected whereupon the lie values are removed from the surrogate and the selected points are evaluated
on the true model and the surrogate is refit with these values.

The adaptive sampling method is specified by the method keyword adaptive_sampling. There are many controls, includ-
ing the number of candidate samples to investigate each iteration (emulator_samples), the fitness metric used in scoring
candidates (fitness-metric), and the number of iterations to perform the adaptive sampling (max_-iterations). For
batch selection of points, one specifies a batch_selection strategy and a batch_size. The details of the specification
are provided in the Dakota reference manual.
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5.6.2 Adaptive sampling based on dart throwing

pof_darts is a novel method for estimating the tail probability (Probability of Failure) based on random sphere-packing
in the uncertain parameter space. Random points are sequentially sampled from the domain and consequently surrounded
by protecting spheres, with the constraint that each new sphere center has to be outside all prior spheres [31]. The radius
of each sphere is chosen such that the entire sphere lies either in the failure or the non-failure region. This radius depends
of the function evaluation at the disk center, the failure threshold and an estimate of the function gradient at the disk center.
After exhausting the sampling budget specified by build_samples, which is the number of spheres per failure threshold,
the domain is decomposed into two regions. These regions correspond to failure and non-failure categories, each represented
by the union of the spheres of each type. The volume of the union of failure spheres gives a lower bound on the required
estimate of the probability of failure, while the volume of the union of the non-failure spheres subtracted from the volume
of the domain gives an upper estimate. After all the spheres are constructed, we construct a surrogate model, specified via a
model_pointer, and sample the surrogate model extensively to estimate the probability of failure for each threshold.

pof_darts handles multiple response functions and allows each to have multiple failure thresholds. For each failure thresh-
old pof_darts will insert a number of spheres specified by the user-input parameter “samples”. However, estimating the
probability of failure for each failure threshold would utilize the total number of disks sampled for all failure thresholds. For
each failure threshold, the sphere radii changes to generate the right spatial decomposition. The POF-Darts method is specified
by the method keyword pof_darts. The sample budget is specified by build_samples. By default, the method employs
a local approach to estimate the Lipschitz constant per sphere.

The surrogate model used by the pof_darts method for extensive sampling is specified using a model_pointer, and its
parameters are therefore defined in that model. It can typically be any global surrogate in Dakota (e.g., Gaussian process,
polynomial chaos expansion, polynomial regression, etc). POF-Darts can also use piecewise-decomposed surrogates which
build local pieces of the surrogate over different domain patches. The piecewise decomposition option is a new capability
added to Dakota to help construct surrogates in high-dimensional spaces, using known function evaluations as well as gradient
and Hessian information, if available. The piecewise decomposition option is declared using the keyword domain_decomp
and currently supports polynomial, Gaussian Process (GP), and Radial Basis Functions (RBF) surroagte models only. For
example: a polynomial regression global surrogate is specified with model polynomial, its order is selected using
surrogate_order, and the piecewise decomposition option is specified with domain_decomp. The domain_decomp
option is parametrized by a cell_type set by default to Voronoi cells, an optional number of support_layers, and an
optional discontinuity_detection capability. See 8.4.3.10 for more details.

5.7 Epistemic Nondeterministic Methods

Uncertainty quantification is often used as part of the risk assessment of performance, reliability, and safety of engineered
systems. Increasingly, uncertainty is separated into two categories for analysis purposes: aleatory and epistemic uncer-
tainty [112, 78]. Aleatory uncertainty is also referred to as variability, irreducible or inherent uncertainty, or uncertainty
due to chance. Examples of aleatory uncertainty include the height of individuals in a population, or the temperature in a
processing environment. Aleatory uncertainty is usually modeled with probability distributions, and sampling methods such
as Latin Hypercube sampling in Dakota can be used to model aleatory uncertainty. In contrast, epistemic uncertainty refers to
lack of knowledge or lack of information about a particular aspect of the simulation model, including the system and environ-
ment being modeled. An increase in knowledge or information relating to epistemic uncertainty will lead to a reduction in the
predicted uncertainty of the system response or performance. For epistemic uncertain variables, typically one does not know
enough to specify a probability distribution on a variable. Epistemic uncertainty is referred to as subjective, reducible, or lack
of knowledge uncertainty. Examples of epistemic uncertainty include little or no experimental data for a fixed but unknown
physical parameter, incomplete understanding of complex physical phenomena, uncertainty about the correct model form to
use, etc.

There are many approaches which have been developed to model epistemic uncertainty, including fuzzy set theory, possibility
theory, and evidence theory. It is also possible to use simple interval analysis in an epistemic context. Interval analysis and
evidence theory are described in more detail below.
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5.7.1 Interval Methods for Epistemic Analysis

In interval analysis, one assumes that nothing is known about an epistemic uncertain variable except that its value lies some-
where within an interval. In this situation, it is NOT assumed that the value has a uniform probability of occuring within the
interval. Instead, the interpretation is that any value within the interval is a possible value or a potential realization of that
variable. In interval analysis, the uncertainty quantification problem is one of determining the resulting bounds on the output
(defining the output interval) given interval bounds on the inputs. Again, any output response that falls within the output
interval is a possible output with no frequency information assigned to it.

We have the capability to perform interval analysis using either global_interval_estor local_interval_est.In

the global approach, one uses either a global optimization method or a sampling method to assess the bounds. global_interval_est
allows the user to specify either 1hs, which performs Latin Hypercube Sampling and takes the minimum and maximum of

the samples as the bounds (no optimization is performed) or ego. In the case of ego, the efficient global optimization method

is used to calculate bounds. The ego method is described in Section 6.2.3. If the problem is amenable to local optimization

methods (e.g. can provide derivatives or use finite difference method to calculate derivatives), then one can use local meth-

ods to calculate these bounds. 1local_interval_est allows the user to specify either sgp which is sequential quadratic
programming, or nip which is a nonlinear interior point method.

Note that when performing interval analysis, it is necessary to define interval uncertain variables as described in Section 9.3.
For interval analysis, one must define only one interval per input variable, in contrast with Dempster-Shafer evidence theory,
where an input can have several possible intervals. Interval analysis can be considered a special case of Dempster-Shafer evi-
dence theory where each input is defined by one input interval with a basic probability assignment of one. In Dakota, however,
the methods are separate and semantic differences exist in the output presentation. If you are performing a pure interval anal-
ysis, we recommend using either global_interval_est or local_interval_est instead of global_evidence or
local_evidence, for reasons of simplicity.

These interval methods can also be used as the outer loop within an interval-valued probability analysis for propagating mixed
aleatory and epistemic uncertainty — refer to Section 15.1.1 for additional details.

An example of interval estimation is shown in Figure 5.20, with example results in Figure 5.21. This example is a demonstra-
tion of calculating interval bounds for three outputs of the cantilever beam problem. The cantilever beam problem is described
in detail in Section 20.7. Given input intervals of [1,10] on beam width and beam thickness, we can see that the interval
estimate of beam weight is approximately [1,100].

5.7.2 Dempster-Shafer Theory of Evidence

We have chosen to pursue evidence theory at Sandia as a way to model epistemic uncertainty, in part because evidence theory
is a generalization of probability theory. Evidence theory is also referred to as Dempster-Shafer theory or the theory of random
sets [112]. This section focuses on the use of Dempster-Shafer evidence theory for propagating epistemic uncertainties. When
aleatory uncertainties are also present, we may choose either to discretize the aleatory probability distributions into sets of
intervals and treat them as well-characterized epistemic variables, or we may choose to segregate the aleatory uncertainties
and treat them within an inner loop. A nested Dempster-Shafer approach for propagating mixed aleatory and epistemic
uncertainty is described in Section 15.1.3.

In evidence theory, there are two complementary measures of uncertainty: belief and plausibility. Together, belief and plausi-
bility can be thought of as defining lower and upper bounds, respectively, on probabilities. Belief and plausibility define the
lower and upper limits or intervals on probability values. Typical plots of cumulative and complementary cumulative belief
and plausibility functions are shown in Figure 5.22 [78]. In evidence theory, it is not possible to specify one probability value.
Instead, there is a range of values that is consistent with the evidence. The range of values is defined by belief and plausibility.
Note that no statement or claim is made about one value within an interval being more or less likely than any other value.

In Dempster-Shafer evidence theory, the uncertain input variables are modeled as sets of intervals. The user assigns a basic
probability assignment (BPA) to each interval, indicating how likely it is that the uncertain input falls within the interval. The
BPAs for a particular uncertain input variable must sum to one. The intervals may be overlapping, contiguous, or have gaps.
In Dakota, an interval uncertain variable is specified as interval_uncertain. When one defines an interval type variable
in Dakota, it is also necessary to specify the number of intervals defined for each variable with iuv_num_intervals as
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# Dakota Input File: cantilever_uqg _global_interval.in

environment
tabular_data
# tabular_data_file = 'cantilever_uqg_global_interval.dat’

method
global_interval_est ego
seed = 1234567

variables
continuous_interval_uncertain = 2
num_intervals = 1 1
interval_probabilities = 1.0 1.0
lower_bounds = 1.0 1.0
upper_bounds = 10.0 10.0
descriptors A i
continuous_state = 4
initial_state = 40000. 29.E+6 500. 1000.
descriptors = 'R' 'TE" 'X'" 'Y’
interface
analysis_drivers = ’‘cantilever’
direct
responses
response_functions = 3
descriptors = "weight’ ’stress’ ’'displ’

no_gradients
no_hessians

Figure 5.20: Dakota input file for performing UQ using interval analysis — see dakota/share/dakota/
examples/users/cantilever_uqg global_interval.in

Min and Max estimated values for each response function:
weight: Min = 1.0000169352e+00 Max = 9.9999491948e+01
stress: Min = -9.7749994284e-01 Max = 2.1499428450e+01
displ: Min = -9.9315672724e-01 Max = 6.7429714485e+01

Figure 5.21: Excerpt of UQ output for interval example.
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Figure 5.22: Example cumulative belief and plausibility distribution functions on left; complementary cumulative
belief and plausibility distribution functions on right

well the basic probability assignments per interval, iuv_interval_probs, and the associated bounds per each interval,
iuv_interval_bounds. Figure 5.23 shows the input specification for interval uncertain variables. The example has
two epistemic uncertain interval variables. The first uncertain variable has three intervals and the second has two. The basic
probability assignments for the first variable are 0.5, 0.1, and 0.4, while the BPAs for the second variable are 0.7 and 0.3. Note
that it is possible (and often the case) to define an interval uncertain variable with only ONE interval. This means that you
only know that the possible value of that variable falls within the interval, and the BPA for that interval would be 1.0. In the
case we have shown, the interval bounds on the first interval for the first variable are 0.6 and 0.9, and the bounds for the second
interval for the first variable are 0.1 to 0.5, etc.

Once the intervals, the BPAs, and the interval bounds are defined, the user can run an epistemic analysis by specifying
the method as either global_evidence or local_evidence in the Dakota input file. Both of these methods perform
Dempster-Shafer calculations: the difference is that the local method uses a local optimization algorithm to calculate the
interval bounds and the global method uses either sampling or a global optimization approach to calculate an interval bound.
These differences are discussed in more detail below. The intervals and their associated BPAs are then propagated through the
simulation to obtain cumulative distribution functions on belief and plausibility. As mentioned above, belief is the lower bound
on a probability estimate that is consistent with the evidence, and plausibility is the upper bound on a probability estimate that
is consistent with the evidence.

Figure 5.24 shows results for the first response function obtained when running the example in Figure 5.23. In this example,
there are 6 output intervals (as a result of the 2 interval input variables with 3 and 2 intervals, respectively). The output intervals
are ordered to obtain cumulative bound functions for both belief and plausibility. The cumulative distribution function is
presented for both belief (CBF) and plausibility (CPF). The CBF value is the cumulative belief corresponding to a certain
output value. For example, the belief that the output value is less than or equal to 0.2 for response 1 is 0.27, and the plausibility
that the output is less than or equal to 0.2 is 1 for response 1. The belief that the output value is less than 0.6217 is 0.75,
while the plausbility that the output is less than 0.0806 is 0.75. The CBF and CPF may be plotted on a graph and interpreted
as bounding the cumulative distribution function (CDF), which is the probability that the output is less than or equal to a
certain value. The interval bounds on probability values show the value of epistemic uncertainty analysis: the intervals are
usually much larger than expected, giving one a truer picture of the total output uncertainty caused by lack of knowledge or
information about the epistemic input quantities.

As in other nondeterministic methods, with 1local_evidence or global_evidence, one can specify probability levels
and response levels. If response levels are specified, the belief and plausibility function values corresponding to those response
levels are calculated (see Belief Prob Level and Plaus Prob Level in the tables shown in Figure 5.24). Similarly, if probability
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# Dakota Input File: textbook_uqg_glob_evidence.in

environment
tabular_data
tabular_data_file = "textbook_ug _glob_evidence.dat’

method

global_evidence lhs
samples = 1000
seed = 59334
response_levels = 0.001 0.03 0.2 0.8 0.001 0.2 0.6 0.8
probability_levels = 0.25 0.5 0.75 0.25 0.5 0.75
distribution cumulative

output verbose

variables
continuous_interval_uncertain = 2
num_intervals =3 2
interval_probabilities = 0.5 0.1 0.4 0.7 0.3
lower_bounds = 0.6 0.1 0.5 0.3 0.6
upper_bounds = 0.9 0.51.0 0.5 0.8
interface
analysis_drivers = ’'text_book’
direct
responses
response_functions = 2

no_gradients
no_hessians

Figure 5.23: Dakota input file for UQ example using Evidence Theory — see dakota/share/dakota/
examples/users/textbook_ug_glob_evidence.in

Belief and Plausibility for each response function:
Cumulative Belief/Plausibility Functions (CBF/CPF) for response_fn_1:
Response Level Belief Prob Level Plaus Prob Level
1.0000000000e-03 0.0000000000e+00 0.0000000000e+00
3.0000000000e-02 0.0000000000e+00 2.7000000000e-01
2.0000000000e-01 2.7000000000e-01 1.0000000000e+00
8.0000000000e-01 9.3000000000e-01 1.0000000000e+00
Probability Level Belief Resp Level Plaus Resp Level
2.5000000000e-01 2.6187288772e-01 6.2609206069e-02
5.0000000000e-01 2.9829775860e-01 6.3736734971e-02
7.5000000000e-01 6.2173551556e-01 8.0596931719e-02

Figure 5.24: Results of an Epistemic Uncertainty Quantification using Evidence Theory.
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levels are specified, these are first interpreted to be belief values, and the corresponding response levels are calculated (see
Belief Resp Level); then they are interpreted to be plausibility values and the corresponding response levels are calculated
(see Plaus Resp Level in the table in Figure 5.24). We have recently added the capability to support generalized reliability
mappings in the evidence methods. If the user specifies a generalized reliability level, it will be first converted to a probability,
then interpreted as a belief and plausibility and the corresponding response levels will be calculated. Likewise, if response
levels are specified, the corresponding belief and plausibility values will be mapped to bounds on the generalized reliability
levels.

To elaborate on the differences between global_evidence and local_evidence: both of these methods take the
Dempster-Shafer structures specified on the inputs and calculate a resulting Dempster-Shafer structure on the outputs (e.g.
a cumulative belief and plausibility function). To calculate the belief and plausibility measures, it is necessary to calculate
the minimum and maximum of the response function in each “interval cell combination.” For example, in a two variable
problem, if the first variable had three intervals and associated BPAs assigned and the second variable had two intervals and
associated BPAs assigned, there would be 6 interval cells in total. In each of these six cells, one needs to identify a minimum
and maximum value of the response function. This is easy to do if the function is monotonic in both variables, but in general
it is not. We offer the capability to use local optimization methods to calculate these bounds: 1ocal_evidence allows the
user to specify either sgp which is sequential quadratic programming, or nip which is a nonlinear interior point method. We
also offer the capability to use global methods to assess these interval cell bounds. global_evidence allows the user to
specify either 1hs, which performs Latin Hypercube Sampling and takes the minimum and maximum of the samples within
each cell as the bounds (no optimization is performed) or ego. In the case of ego, the efficient global optimization method
is used to calculate bounds. The ego method is described in Section 6.2.3. Note that for a situation with many uncertain
variables, each with a fairly complicated Dempster-Shafer structure described by many intervals, there will be a huge number
of interval calls, and the overall process of performing Dempster-Shafer analysis will be extremely expensive. Reference [137]
provides more details about the implementation of the optimization methods to perform Dempster-Shafer calculations, as well
as comparisons on test problems.

5.8 Bayesian Calibration Methods

In Bayesian calibration a “prior distribution” on a parameter is updated through a Bayesian framework involving experimental
data and a likelihood function. Bayesian inference theory is best left to other sources [88] and only a brief summary is
given here. In Bayesian methods, uncertain parameters are characterized by probability density functions. These probability
density functions define the permissible parameter values - the support, as well as the relative plausibility of each permissible
parameter value. In the context of calibration or any inference step, the probability density function that describes knowledge
before the incorporation of data is called the prior, fe (0).

Note: In Dakota, the prior distribution is characterized by the properties of the active uncertain variables. Correlated priors are
only supported for unbounded normal, untruncated lognormal, uniform, exponential, gumbel, frechet, and weibull distributions
and require a probability transformation by specifying standardized_space.

When data are available, the likelihood function describes how well each parameter value is supported by the data. Bayes
Theorem [85], shown in Equation 5.9, is used for inference: to derive the plausible parameter values, based on the prior
probability density and the data d. The result is the posterior probability density function of the parameters fe|p (0|d). It is
interpreted the same way as the prior, but includes the information derived from the data.

fe (6) £ (6;4d)
fo(d)

The likelihood function is used to describe how well a model’s predictions are supported by the data. The likelihood function
can be written generally as:

feip (8|d) = (5.9)

L(0;d) = F(q(0) — d),

where 6 are the parameters of model quantity of interest ¢q. The form of the function F can greatly influence the results. The
specific likelihood function used in Dakota is based on Gaussian probability density functions. This means that we assume the
difference between the model quantity (e.g. quantity of interest returned from a computer simulation) and the experimental
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observations are Gaussian:
di = q:(0) + €, (5.10)

where €; is a random variable that can encompass both measurement errors on d; and modeling errors associated with the
simulation quantity of interest g;, for each of n observations.

If we assume that all experiments and observations are independent, then the probabilistic model defined by Eq. (5.10) results
in a likelihood function for @ that is the product of n normal probability density functions:

n

£o;d) =]

1=

- aio)] s

——— exp {f 502

oqV 2T

where 042 refers to the measurement error of the data, assumed constant across all data observations in this case.

We also support the more general case of a full covariance matrix, 34, that specifies the covariance between each observation
¢ and j. In this case, the likelihood is commonly written in log form, where the log-likelihood is:

log £(6;d) —%TTEdfln (5.12)

where 7 is the vector of residuals between the data points and the model quantity of interest, ¢(0) — d.

Dakota admits four experiment_variance_type options to specify the measurement error covariance: none for no
measurement error specified (in this case, the variance is assumed to be one), scalar where a constant value o4’ is given for
all observations, diagonal where a value is specified for the diagonal elements of the covariance matrix 34 meaning that
each observation has its own measurement error but there are no cross terms, and mat rix where the full covariance matrix
34 is specified. The diagonal and matrix terms are only available for field response data. In contrast to earlier versions
of Dakota, all measurement error variance should be specified with units of variance/covariance, not standard deviation.

Markov Chain Monte Carlo (MCMC) is the prototypical method used to estimate posterior parameter densities, given the
observational data and the priors. There are many references that describe the basic algorithm [56] and this is an active
research area. MCMC algorithms may require hundreds of thousands of steps to converge, depending on dimensionality,
response nonlinearity, and the desired set of posterior statistics. Since each iteration involves an evaluation of the model to
obtain ¢(@), surrogate models of expensive simulations are often employed to make the MCMC process tractable.

Dakota offers five approaches for Bayesian calibration: QUESO, DREAM, GPMSA, MUQ, and WASABI. They are specified
with the bayes_calibration keyword in combination with the queso, dream, gpmsa, mug, or wasabi selections,
respectively. The QUESO and GPMSA methods use components from the QUESO library (Quantification of Uncertainty
for Estimation, Simulation, and Optimization) developed at The University of Texas at Austin. It implements the Delayed
Rejection and Adaptive Metropolis [72] (DRAM) algorithm, among others. Algorithm variants selectively combine the de-
layed rejection and adaptive elements. The QUESO/GPMSA capability is based on the GPMSA Matlab toolbox developed at
Los Alamos National Laboratory and uses tightly integrated Gaussian process models during calibration. The Dakota imple-
mentation of QUESO/GPMSA is in a prototype stage. DREAM uses an implementation of DiffeRential Evolution Adaptive
Metropolis developed by John Burkardt. The DREAM approach runs concurrent chains for global exploration, and auto-
matically tunes the proposal covariance during the process by a self-adaptive randomized subspace sampling [146]. MUQ
uses components from the MIT Uncertainty Quantification library and also implements the Delayed Rejection and Adaptive
Metropolis [72] (DRAM) algorithms, among others. The prototype WASABI method is an MCMC-free Bayesian calibration
approach. QUESO/DRAM and variants are the most well-developed within Dakota.

5.8.1 QUESO

The QUESO library includes several sampling algorithm variants. One can use a standard Metropolis-Hastings algorithm
(metropolis_hastings), adaptive Metropolis (adaptive_metropolis) for adapting the proposal covariance during
the sampling, delayed rejection (delayed_-rejection) for backtracking from sample rejections, the full DRAM (dram)
which involves both delayed rejection and adaptive Metropolis, or a multi-level algorithm (multilevel). This last option
is not yet production-ready in Dakota.
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With any choice of sampling algorithm, one may manually set the burn in period for the MCMC chain with burn_in_samples.
If a sub_sampling_period is specified, the MCMC chain is further filtered such that only the sample at the beginning
of each period is in the final MCMC chain. The sub_sampling_period should therefore be greater than or equal to the
correlation length of the samples.

With the QUESO method, one may run the MCMC sampling on the simulation model directly. However, if the model is
expensive, use of a surrogate (emulator) model is recommended. Options include a Gaussian process, a polynomial chaos
expansion, or a stochastic collocation expansion.

The proposal covariance refers to the covariance structure of a multivariate normal distribution, which governs sample gener-
ation in the chain. One may specify proposal_covariance, followed by prior (the default), values, filename, or
derivatives. With the prior setting, the proposal covariance will be set to the variance of the prior distributions of the
parameters being calibrated. When specifying the proposal covariance with input file values or from a separate file, the user
may specify only the diagonals of the covariance matrix or the full covariance matrix.

The derivatives option will use derivatives from the simulation or emulator model to form or approximate the Hessian of the
misfit function (the negative log likelihood). Especially when derivative information is available inexpensively (e.g. from an
emulator), the derivative-based proposal covariance forms a more accurate proposal distribution, resulting in lower rejection
rates and faster chain mixing. When using an emulator, the derivative-based proposal covariance should be updated periodi-
cally using the posterior_adaptive specification. This will add simulation truth evaluations in areas of high-likelihood
to the emulator training data, thus refining the Hessian. For more detail about derivative-based formulations involving the
misfit Hessian, refer to the Theory Manual.

An additional control for QUESO is to perform a logit transformation (logit_transform) which performs an internal
variable transformation from bounded domains to unbounded domains. This option can be helpful when regions of high
posterior density exist in the corners of a multi-dimensional bounded domain. In these cases, it may be difficult to generate
feasible samples from the proposal density, and transformation to unbounded domains may greatly reduce sample rejection
rates.

The pre_solve option will perform a deterministic gradient-based optimization before the MCMC sampling to get a good
starting point for the chain. This pre-solve seeks to maximize the log-posterior (the log-likelihood minus the log-prior) to
identify the maximum a posteriori probability point, also called the MAP point. The Markov Chain will then start at the MAP
point, which can circumvent a lot of initial searching for high posterior probability points. The pre-solve option can be used
with an emulator or with no emulator.

Credible and prediction intervals will be calculated if probability_levels is specified. Credible intervals propagate
uncertainties in parameter density information to the quantity of interest and quantify how well the model fits the pro-
vided data, while prediction intervals propagate both parameter and experimental measurement uncertainties and contain
the next experimental or simulated observation with the specified probability. Further details can be found in [127]. If
probability_levels is specified, credible intervals will always be calculated. Prediction intervals will only be calcu-
lated if experiment_variance_type is also specified in the responses block. By specifying posterior_stats,
information-theoretic metrics may be calculated using the posterior distribution of parameters. If the k1_divergence option
is selected, the Kullback-Leibler Divergence will be calculated between the posterior and the prior distributions such that

fe|p (6]d)
fe (0)

This quantity represents the amount of information gained about the parameters during the Bayesian update. Further details
regarding the calculation and use of D, can be found in [24].

DKL = /f@|D (0|d) log de. (5.13)

5.8.2 DREAM

For the DREAM method, one can define the number of chains used with the chains specification. The total number of
generations per chain in DREAM is the number of samples divided by the number of chains. The number of chains randomly
selected to be used in the crossover each time a crossover occurs is crossover_chain_pairs. There is an extra adaptation
during burn-in, in which DREAM estimates a distribution of crossover probabilities that favors large jumps over smaller ones
in each of the chains. Normalization is required to ensure that all of the input dimensions contribute equally. In this process,
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a discrete number of candidate points for each crossover value is generated, which can be specified with num_cr. The
gr_-threshold control is the convergence tolerance for the Gelman-Rubin statistic, which governs the convergence of the
multiple chain process. The integer jump_step forces a long jump every jump_step generations. For more details about
these parameters, refer to [146]. Credible and prediction intervals can be calculated by specifying probability_levels,
and statistics regarding the posterior may be calculated by specifying posterior_stats, as described in Section 5.8.1.

5.8.3 GPMSA

Core to GPMSA is the construction of a Gaussian process emulator from simulation runs collected at various settings of input
parameters. The emulator is a statistical model of the system response, and it is used to incorporate the observational data
to improve system predictions and constrain or calibrate the unknown parameters. The GPMSA code draws heavily on the
theory developed in the seminal Bayesian calibration paper by Kennedy and O’Hagan [88]. The particular approach developed
by the Los Alamos group, and implemented in QUESO and therefore Dakota, is provided in [79]. It includes an embedded
discrepancy model and the ability to estimate various hyper-parameters of the Gaussian process, observation error model, and
discrepancy model. Dakota’s GPMSA capability is an experimental prototype with a number of limitations. See the Dakota
Reference Manual [3] for more information.

5.84 MUQ

MUQ is the MIT Uncertainty Quantification library. See https://bitbucket.org/mitug/mug2/src/master/
and https://mitug.bitbucket.io/index.html for additional documentation. Dakota currently exposes four
MCMC approaches from MUQ: Metropolis-Hastings, Adaptive Metropolis, Delayed Rejection, and Delayed-Rejection Adap-
tive Metropolis. Dakota’s MUQ integration is preliminary, anticipated to extend to use MUQ components for Hamiltonian
Monte Carlo and Langevin-based sampling. MUQ is an experimental Dakota capability, and as such, it is not turned on by
default, and must be explicitly enabled when compiling Dakota.

5.8.5 WASABI

WASABI differs from the other Bayesian approaches in that it is not an MCMC-based approach. Instead, it is based on the
idea of “consistent Bayes” which is outlined in [13]. This approach to stochastic inference uses measure-theoretic principles
to construct a probability measure or density on model parameters that is consistent with the model and the data. The idea is
that the probability measure on the parameters, when “pushed-foward” through the computational model, will give results that
match the probability measure on the observational data.

We use a similar notation as with the Bayesian methods, but the interpretation is different here. The goal is to identify the
posterior density on the parameters, Tp0s¢ (), which is equal to the prior density on the parameters times a ratio. The numerator

obs

of the ratio, 77,*, describes the relative likelihood that the output of the model corresponds to the observed data D: this is the
density of the data evaluated at the model output. ¢(0) refers to the model output. w%’”” refers to the push-forward of the

prior through the model and represents a forward propagation of uncertainty.

7% (q(6))

Tpost (0) = Tprior (0) W .

(5.14)

The Theory Manual [24] has more detail about the assumptions and mathematical foundations for this method. Note a major
difference in interpretation of the posterior results with respect to a standard Bayesian approach: In a standard Bayesian
approach, the posterior reflects an updated state of information about the prior distribution on parameter values induced by the
observational data. In consistent Bayes, the posterior reflects a stochastic mapping of parameter values such that the posterior
parameters, when pushed-forward through the model, give results that are consistent with the density of the observational data.
WASABI is a prototype capability. See the Dakota Reference Manual [3] for more information.
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Table 5.2: Capabilities of Bayesian methods in Dakota

Capability QUESO MUQ GPMSA DREAM WASABI

Prior Any Any Any Uniform only Uniform

Distributions continuous continuous continuous only

variable type variable type variable type

Inference Type MCMC with MCMC with MCMC with MCMC with MCMC-
DR, AM, DR, AM, DR, AM, Differential free
DRAM, or DRAM, or DRAM, or Evolution Adaptive interval

MH MH MH Metropolis analysis

Can use Yes Yes Yes Yes Yes

PCE/SC

Emulator

Can use GP Yes Yes Yes (required) Yes Yes

Emulator

Likelihood- Yes No No No No

based adaptive
emulator update

Initialize with Yes Yes No No No

MAP pre-solve

Proposal prior, user, n/a prior, user n/a n/a

covariance derivative-

options based

Can calibrate Yes Yes Yes (internal) Yes No

error covariance

multipliers

Supports Yes Yes Yes Yes Yes

standardized

space

Logit transform Yes Yes Yes No No

Posterior export samples samples samples samples samples,
density

5.8.6 Feature Comparison

Table 5.2 compares the options available with the QUESO, DREAM, GPMSA, MUQ, and WASABI implementations in
Dakota.

5.8.7 Bayesian Calibration Example

To run a QUESO-based Bayesian calibration in Dakota, create a Dakota input file such as the one shown in Figure 5.25. Here,
the QUESO DRAM (delayed rejection adaptive metropolis) solver is selected. The number of samples = 1000 indicates how
many points to generate in the acceptance chain’. This example uses the mod_cant ilever algebraic model, so an emulator
is not warranted. The proposal covariance used has diagonal element values of 1.6 and 0.1. Two credible and prediction
intervals will be calculated for each model output: a 5/95 interval and a 10/90 interval. The calibration terms in the responses
section refers to the number of outputs that will be used in the calibration process: in this case, it is just two. The calibration
data file has the observational data: in this case, it is a freeform file (e.g. no header or annotation) with ten experiments. For

31If delayed rejection is active, the number of simulation evaluations will typically be higher due to backtracking.
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each experiment, there are two experiment values, one for stress and one for displacement, followed by two variance values
for the error associated with that experiment for each quantity of interest.

method
bayes_calibration queso
chain_samples = 1000 seed = 3438
dram # | delayed_rejection | adaptive_metropolis | metropolis_hastings
proposal_covariance
values 1.0e6 1.0e-1

diagonal
logit_transform # default is off
probability_levels 0.05 0.1

0.05 0.1
posterior_stats kl_divergence
output debug

variables

uniform_uncertain 2
upper_bounds 1.e8 10.0
lower_bounds 1.e6 0.1
initial_point 2.85e7 2.5
descriptors 'E’ ’'w’

continuous_state 4
initial_state 3 40000 500 1000
descriptors 't/ 'R’ X’ 'Y’

interface
analysis_drivers = 'mod_cantilever’
direct
responses
calibration_terms = 2
calibration_data_file = ’'dakota_cantilever_qgueso.withsigma.dat’
freeform
num_experiments = 10
variance_type = ’'scalar’ # read 2 scalar sigmas in each row
descriptors = ’'stress’ ’‘displacement’

no_gradients
no_hessians

Figure 5.25: Dakota input file for Bayesian calibration

When the input file shown in 5.25 is run, Dakota will run the MCMC algorithm and generate a posterior sample of @ in
accordance with Bayes Theorem 5.9 and the likelihood function 5.11. Dakota’s final output summary reports an evaluation
count summary and the best sample point visited during the MCMC process as measured by maximum posterior probability
(an estimate of the MAP point). The final output also summarizes the moments of the posterior samples from the chain (e.g.
mean of the chain, standard deviation of the chain samples, etc.), as well as the credible and prediction intervals for each model
output.

Auxilliary output is also generated to a directory called QuesoDiagnostics/ in the directory from which Dakota is run.
The file display_sub0.txt contains diagnostic information regarding the MCMC process. The Matlab files contained in
the QuesoDiagnostics/ directory contain the chain files. The files to load in Matlab are raw_chain.mor filtered_

Dakota Version 6.15 User’s Manual generated on November 10, 2021



106 CHAPTER 5. UNCERTAINTY QUANTIFICATION CAPABILITIES

chain.m, containing the full chain or the filtered chain values of the parameters®. In addition, the accepted chain values that
Dakota generates are written to a file in the run directory called (by default) dakota_mcmc_tabular.dat. The first
columns of this file are the posterior values of the input variables. If burn_in or sub_sampling_period are specified,
the filtered acceptance chain is instead written to the file dakota_mcmc_tabular.dat. This file contains the posterior
values of the filtered MCMC chain, as well as the values of state variables and the resulting model responses. Finally, if one
wants to see the likelihood of each point, specifying verbose output in the method section will result in the likelihoods being
printed.

5.8.8 Chain Diagnostics

The convergence of the chain produced by MCMC may require many thousands of steps, if not millions, as discussed earlier
in this section. Assessing the convergence of MCMC chains is an active area of research, and the implementation of metrics
for chain convergence is undergoing active development in Dakota, and can be triggered during a Bayesian calibration study
through the use of the keyword chain_diagnostics.

As of Dakota 6.10, confidence_intervals is the only diagnostic implemented.

Suppose g is a function that represents some characteristic (e.g. moment) of an underlying distribution, such as the mean or
variance. Then under the standard assumptions of an MCMC chain, the true value can be approximated by taking the ensemble
mean over the MCMC chain. The confidence interval for the true moment calculated using the asymptotically valid interval
estimator is given by [49]

On
\/ﬁ?
where g, is the estimated moment (i.e. mean or variance), t. is the Student’s ¢-value for the 95th quantile, n is the MCMC
chain length, and &,, is an estimate of the standard error whose square is obtained using batch means estimation. To obtain
the estimate &, the Markov chain produced during calibration is broken up into “batches,” the sample moment is calculated
for each batch, and &, is subsequently obtained as an unbiased estimate of the standard deviation in the moment calculations
over the batches. The confidence intervals produced are 95% confidence intervals, and they are calculated for the mean and
variance (first and second moments) for each parameter and each response. Further details regarding the default settings for
these calculations can be found in the Dakota Theory Manual [24].

gn £ s (5.15)

Confidence intervals may be used as a chain diagnostic by setting fixed-width stopping rules [115]. For example, if the
interval width is below some threshold value, that may indicate that enough samples have been drawn. Common choices for
the threshold value include:

* Fixed width: €

* Relative magnitude: €||gx ||

* Relative standard deviation: €|+, ||
If the chosen threshold is exceeded, samples may need to be increased, say by 10%, and the diagnostics reevaluated for
signs of chain convergence. Furthermore, if output is set to debug, the sample moment for each batch (for each parameter

and response) is output to the screen. The user can then analyze the convergence of these batch means in order to deduce
whether the MCMC chain has converged.

5.8.9 Calibrating the Observation Error Model

As discussed in Section 12.2.3, Dakota accepts user information on the covariance 34 among observation errors and includes
this in the likelihood formulation:

log £(6;d) —%TTEdflr.

4The full chain will be output in cases of adaptive posterior refinement or proposal updating, since these use cases access the entire
acceptance chain to identify refinement data or restarting points, respectively.

Dakota Version 6.15 User’s Manual generated on November 10, 2021



5.8. BAYESIAN CALIBRATION METHODS 107

In some cases, it can be helpful to fine tune the assumptions in this covariance during the calibration process. Dakota
supports calibrating one or more multipliers on the blocks of the error covariance. So if ¥4 is block diagonal such that
¥4 = diag(X4y, ..., Zan), we instead formulate as Xq = diag(mi1X41,...,mp3ap) and calibrate the multipliers m; as
hyper-parameters in the Bayesian inference process.

The supported modes for calibrating observation error multipliers are shown in Figure 5.26: one, per_experiment, per_
response, and both. Here, the two major blocks denote two experiments, while the inner blocks denote five response
groups (two scalar, three field). The priors on the hyper-parameters m; are taken to be inverse gamma distributions, with mean
and mode approximately 1.0 and standard deviation approximately 0.1.

(a) (b)

Figure 5.26: Calibrating observational error covariance multipliers: (a) one multiplier on whole user-provided
covariance structure, (b) multiplier per-experiment, (c) multiplier per-response, and (d) both..
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5.8.10 Scaling and Weighting of Residuals

Dakota’s scaling options, described in Section 6.3.2, can be used on Bayesian calibration problems, using the calibration_
term_scales keyword, to scale the residuals between the data points and the model predictions, if desired. Additionally,
Bayesian calibration residuals-squared can be weighted via the calibration_termsweights specification. Neither
set of weights nor scales are adjusted during calibration. When response scaling is active, it is applied after error variance
weighting and before weights application. The calibration_terms keyword documentation in the Dakota Reference
Manual [3] has more detail about weighting and scaling of the residual terms.

5.8.11 Model Evidence

In some situations, there are multiple models that may represent a phenomenon and the user is left with the task to determine
which is most appropriate given the available data. In this case, Bayesian model selection may help. Suppose that the user has
a set of models, M=M;, Ms...M,, from which to choose. In the Bayesian setting, the parameters of each of these models
may be updated according to Bayes’ rule:

m(D|0;, M;)

ﬂ-post(ei‘D7 Mz) - 7rprio'r(eiu\fi) W(D‘M)

(5.16)
where the dependence on the model has been made explicit. The denominator is used as the likelihood of a specific model of
interest in a version of Bayes’ rule which calculates the posterior model plausibility as:
(D[ M;)

Wpost(Mi‘D) = Wprior(Mi)W (517)
In this equation, the posterior model probability given the data is also referred to as model plausibility. The prior model
plausibility, 7w(M;), is usually taken to be uniform, meaning equally likely for all models, but it does not have to be. 7 (D) is
a normalizing factor such that the sum of all model plausibilities is 1. In this context, model selection involves choosing the
model with the highest posterior model plausibility. Model evidence is defined as the likelihood in Equation 5.17, denoted by
w(D|M;). Model evidence is determined by averaging the likelihood of its model parameters over all possible values of the
model parameters, according to their prior distributions. It is also called the marginal likelihood of the model. Model evidence
is defined as:

m(D|M;) = /W(D‘ei, M;)Tprion (0:] M) d6; (5.18)

There are many ways to calculate model evidence. There are currently two methods implemented in Dakota. The user
first specifies model_evidence, then either mc_approx and/or laplace_approx depending on the method(s) used to
calculate model evidence.

1. Monte Carlo approximation. This involves sampling from the prior distribution of the parameters, calculating the
corresponding likelihood values at those samples, and estimating the integral given in Eq. 5.18 by brute force. The
number of samples used in the sampling of the integral is determined by evidence_samples. Although this method
is easy, it is not efficient because each sample of the prior density requires an evaluation of the simulation model to
compute the corresponding likelihood. Additionally, many prior samples will have very low (near zero) likelihood, so
millions of samples may be required for accurate computation of the integral.

2. Laplace approximation. This approach is based on the Laplace approximation, as outlined in [151]. It has the assump-
tion that the posterior distribution is nearly Gaussian, which is not always a safe assumption. Then, with maximum a
posteriori (MAP) point 8, the Laplace approximation of model evidence is:

—1/2

/7r(D|9i, M) Tprior (05| M;)d0; ~ 7(D|0, M;)m (8| M) (27)Ni/?|| det(H(0))]| (5.19)

where N; is the number of unknown parameters in the i-th model and H is the negative Hessian of the log-posterior
evaluated at the MAP point 6. Therefore, this implementation only requires the evaluation of the model likelihood and
the Hessian of the log-posterior density at the MAP point.
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5.8.12 Model Discrepancy

Whether in a Bayesian setting or otherwise, the goal of model calibration is to minimize the difference between the observa-
tional data d; and the corresponding model response ¢; (). In the presence of scenario or configuration variables x, Eq. 5.10
can be modified,

di(x) = ¢; (0,2) + &, (5.20)
with the ensuing equations of the likelihood and Bayes’ Theorem updated likewise. The configuration variables represent
experimental settings, such as temperature or pressure, that may vary between experiments.

However, it is often the case that the agreement between the data and the model after calibration is not sufficiently close. This
is generally attributed to model form or structural error, and can be corrected to some extent with the use of model discrepancy.
The Kennedy and O’Hagan [88] formulation takes the form

di(z) = i (0,2) + di(z) + €, (5.21)
where 0; () represents the model discrepancy. For scalar responses, the model discrepancy is only a function of the configu-
ration variables. Furthermore, one discrepancy model is calculated for each observable d;, ¢ = 1,. .., n, yielding 61, . . ., In.

For field responses, a single, global ¢ is a function of the configuration variables as well as the independent field coordinates,
which are usually points in time or space. The construction of the model discrepancy in cases with mixed scalar and field
responses has not been tested.

The current implementation of the model discrepancy capability in Dakota serves as a post-processing mechanism after the
completion of a Bayesian update. If model_discrepancy is specified in the input file, Dakota will perform the Bayesian
update as detailed in the section above, and then begin the process of approximating ¢. For each scalar observable d; and for
each configuration z;,

8 (w5) = di (x5) — q: (67, z5) , (5.22)
where 0* is the average of the calibrated posterior distribution of the model parameters. The ‘" discrepancy function will be
built over the computed §; (x;), j = 1,...,m. For field observable d, the discrepancy is calculated for each independent field
coordinate ¢; and for each configuration x;,

5(ti,$j) zd(ti,m]-)—q(e*,ti,xj). (523)

The global discrepancy function is then built over the computed 6(¢;,z;), ¢ = 1,...,n, 5 = 1,...,m. For simplicity in
future notation, we let §; (x;) = §(¢i, ;).

The field discrepancy function is built using a Gaussian process regression model with a quadratic trend function. If instead the
responses are scalars, more options for the regression model are available. Within the Dakota input file, the user may specify

the discrepancy-type to be either a Gaussian process or polynomial regression model with the gaussian_process or
polynomial commands, respectively. Additionally, the order of the trend function may be selected using the correction_order
command and choosing one of constant, linear, or quadratic. Any specifications using these keywords will apply

to all §;. By default, Dakota will build a Gaussian process discrepancy model with a quadratic trend function. Information
regarding how polynomial and Gaussian process models are built can be found in Sections 8.4.3.4 and 8.4.3.5, respectively.

The user may specify new “prediction” configurations at which the corrected model should be calculated. For each response
and for each new configuration, ¢; (0, Tk new) + 0: (Tk new) Will be computed. The prediction configurations can be specified
in one of three ways. If num_prediction_configs is included, Dakota will uniformly distribute the indicated number of
prediction configurations throughout the domain of the configuration variable that is given in the variables block of the
input file. Alternatively, the user may explicitly list desired prediction configuration locations within the input file following
the prediction_configs keyword, or in an external file to be read in with the import_prediction_configs option.
If none of these three options is selected, Dakota will automatically calculate corrected model predictions at ten configurations
in the scalar response case, with the predictions spread uniformly in the configuration variable domain. In the case of field
responses, corrected model predictions are calculated for each value of the input configuration variable(s).

Calculations corresponding to each prediction configuration and to each observable will be output to tabular files. The re-
sponses from the discrepancy model itself is output to dakota_discrepancy_tabular.dat. Those from the corrected
model are output to dakota_corrected_tabular.dat. The user may specify the output file names for the discrep-
ancy and corrected model tabular files using the export_discrepancy_file and export_corrected model_file
keywords, respectively.
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Variance information corresponding to each specified configuration location and for each observable is also computed. In a
prediction setting for scalar responses, the variance calculated from the discrepancy model is additively combined with the
variance information provided with the experimental data, such that

Stotat,i(2) = Bo,i(2) + Tonpil (5.24)

for each observable 7. Further details of how the variance s ; () is computed for Gaussian process and polynomial regression
models can be found in the Dakota Theory Manual [24]. The experimental variance provided for parameter calibration may
vary for the same observable from experiment to experiment, thus agzm is taken to be the maximum variance given for each
observable. That is,

Olopi = max of (z;), (5.25)

where o7 (z;) is the variance provided for the i*" observable d;, computed or measured with the configuration variable ;.

When each corrected model value ¢; (0, Tk new) + 0i(Tk new) 18 considered, the variance calculated via 5.24 provides a
prediction interval, similar to those described in Section 5.8.1. Including agzp,i in the variance calculation accounts for the
uncertainty in the model predictions that arise due to uncertainties in the calibration data. These prediction variances are output
to the file dakota_discrepancy_variance_tabular.dat by default. The name of this file can be modified using
the export_corrected-variance_file keyword in the input script. If the response is a field, the variance information
written to this file is the variance of the Gaussian process alone. Future work includes calculation of combined experimental
variance and discrepancy model variance for field responses.

Additional details and an illustrative example of these calculations are given in the Dakota Theory Manual [24].

5.8.13 Bayesian Experimental Design

The goal of experimental design is to add observational data to the Bayesian update that informs model parameters and reduces
their uncertainties. In Bayesian approaches, data from physical experiments is typically used to calibrate a model. However,
another common practice is to use responses or output from a high-fidelity model as “truth data” in place of experimental data
in a low-fidelity model calibration. This can be done in with a single Bayesian calibration, or it can be done iteratively with
the use of experimental design, where an initial set of high-fidelity runs is augmented sequentially to find the next “best” high-
fidelity design point at which to run the high-fidelity model to add to the calibration data. The low-fidelity posterior parameter
distribution is then updated again using Bayesian calibration. The mutual information is used as the selection criterion to guide
the process of high-fidelity data acquisition.

In Dakota, design conditions, such as temperature or spatial location, can be specified using so-called configuration variables.
The design selection algorithm implemented in Dakota uses a user-specified high-fidelity code to produce the “experimental”
or observational data that is used in the calibration of the desired low-fidelity model. The high-fidelity model is dependent only
upon the design or configuration variables while the low-fidelity model depends on both the design variables and uncertain
model parameters.

An example Dakota input file that implements this Bayesian experimental design algorithm is shown in Figures 5.27-5.28.
Note that there are three model blocks, one describing the model hierarchy and one each for the high-fidelity and low-
fidelity models. There are two variables, interface, and responses blocks such that each model has its own
specifications. The low-fidelity variables block contains information about both the design variables, which are spec-
ified with continuous_state, and the parameters to be updated via Bayes’ Theorem 5.9, which are specified using
one of the aleatory uncertain variable types discussed in Section 9.3.1.1. In the high-fidelity variables block, only the
continuous_state parameters are included. The specifications of the design variables should be consistent in both blocks.
Each interface block should point to the appropriate high- or low-fidelity code, and the responses blocks should con-
tain consistent details about the responses from each code. For example, both of the models should return the same number of
calibration_terms.

The mutual information experimental design algorithm is selected by specifying bayesian_calibration, queso, and
experimental_design within the method block of the input file, and the first mode 1 block should contain the hierarchical
specification of the surrogate keyword. The algorithm starts by performing a Bayesian calibration using a number of
data points, specified in Dakota by initial_samples. These initial data points can be pulled from external data using
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environment
tabular_data

method ,

bayes_calibration queso
dram
seed = 34785
chain_samples = 500
experimental_design
initial_samples = 2
num_candidates = 2
import_candidate_points_file = ’dakota_bayes_expdesign.cand

freeform

#ksg?2
max_hifi_evaluations = 1
model_pointer = 'HIERARCH’

model ,
id_model = ’HIERARCH’
variables_pointer = ’ALL_VARS’
surrogate hierarchical
ordered_model_fidelities = 'LF’ ’HF’

model ,
id_model = 'LF’
single
interface_pointer = ’lofi_IF”’
variables_pointer = 'ALL_VARS’
responses_pointer = “lofi_resp’

model ,
id_model = 'HF’
single
interface_pointer = ’hifi_IF”’
variables_pointer = ’*CONFIG_.VARS’
responses_pointer = “hifi_resp’

variables ,
id_variables = *ALL_VARS’
continuous_state = 1
upper_bounds = 70
lower_bounds = 10
uniform_uncertain = 3
upper_bounds 0.06 0 260
lower_bounds 0 -8 0

variables ,
id_variables = *CONFIG_VARS’
active state

continuous_state = 1
upper_bounds = 70
lower_bounds = 10

.dat”’

Figure 5.27: Dakota input file for Bayesian Experimental Design.
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interface ,

id_interface = ’hifi_IF’
analysis_drivers = ’“expdesign_high’
fork

interface ,
id_interface = ’lofi_IF’
analysis_drivers = ’expdesign_low
fork

s

responses ,
id_responses = ’lofi_resp’
calibration_terms = 1
no_gradients
no_hessians

responses ,
id_responses = ’hifi_resp’
calibration_terms = 1
calibration_data_file = ’dakota_bayes_expdesign.dat’
freeform
num_config_variables = 1
num._experiments = 2
experiment_variance_type = ’none’

no_gradients
no_hessians

Figure 5.28: Dakota input file for Bayesian Experimental Design.
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the calibration_data_file keyword in the high-fidelity response block. In this case, num_config.variables
should be specified and set to the number of configuration variables captured in the variables blocks. Furthermore, for use
in Bayesian experimental design, calibration_data_file should contain the configuration variables and the correspond-
ing high-fidelity model responses. Scalar variance information may be included for the calibration data through the use of the
experimental variance_type or simulation_variance command within the high-fidelity responses block.
The former is applied to any user-provided data, such as through the calibration_data-file keyword, while the latter
applies only to those high-fidelity model responses produced by the high-fidelity code run by Dakota. Further information can
be found in the Dakota Reference Manual [3]. If the number of points taken from this file is less than initial_samples,
or if no such file is provided, Latin Hypercube Sampling is used to draw samples of the design space, and the high-fidelity
model is run at these points to supplement the user-specified data. After this initial calibration, a set of design conditions
(i.e. configuration variables) of size num_candidates is proposed. Users may specify these candidate points through the
import_candidate_points_file command. Again, if the number of points in this file is less than num_candidates,
or if no such file is provided, Latin Hypercube Sampling is used to draw samples of the design space.

From these candidate designs, that which maximizes the mutual information with respect to the low-fidelity model parameters
is deemed “optimal.” The mutual information is approximated using the low-fidelity model and a k-nearest neighbor algorithm,
as detailed in [98]. This optimal design is used in the high-fidelity model to create a new observation, which is appended to the
initial data. This updated data is used to recalculate the Bayesian posterior, and the process repeats until one of three stopping
criteria are met. Multiple optimal designs may be selected concurrently by specifying bat ch_size in the input script. These
designs are selected using the greedy algorithm described in detail in [24]. In this case, the high-fidelity model is run at all
batch-selected optimal designs before the Bayesian posterior is recalculated with the updated data for an ensuing iteration of
the experimental design algorithm.

There are two algorithms that may be used to calculate the mutual information, both of which are derived in [93]. The first al-
gorithm discussed therein is used as the default algorithm within Dakota; the second may be selected by including the keyword
ksg2 in the Dakota input script. Furthermore, the user may choose to include, during the computation of the mutual infor-
mation, a stochastic error term on the low-fidelity model responses. This is done by specifying simulation_variance
in the responses block corresponding to the low-fidelity model. See the Dakota Theory Manual [24] for more information
regarding the implementation of the mutual information calculations.

There are three criteria by which this algorithm is considered complete. The user may specify max_hifi_evaluations,
which limits the number of high-fidelity model simulations Dakota will run. Note that this does not include any simulations
needed to perform the initial Bayesian calibration of the low-fidelity model parameters. Alternatively, if the change in the
mutual information from one iteration to the next is sufficiently small or if all candidate points have been exhausted, the
algorithm will terminate.

Progress of the algorithm will be reported to the screen with the rest of the Dakota output. Furthermore, a summary of the
algorithm’s results, including, for each iteration, the optimal design, the mutual information, and the corresponding high-
fidelity model response, can be found in the file experimental_design_output.txt.

5.8.13.1 One-at-a-time Implementation

There may be some applications for which the high-fidelity model must be run independently of Dakota. This algorithm
may still be implemented in this case, however, it requires some extra work by the user to ensure that the high-fidelity model
information is properly communicated to Dakota, as a "dummy” high-fidelity model code must be supplied to Dakota. The
data to be used in the initial Bayesian calibration should be gathered from the high-fidelity model or physical experiment
and imported via the calibration_data-file in the high-fidelity responses block, and extra care should be taken
to ensure that initial_samples matches the number of experiments in this file. It is also best, for this use-case, to use
import_candidate_points_file, with num_candidates exactly matching the number of candidate points in the
file.

By settingmax_hifi_evaluations to zero, Dakota will run the initial calibration of the low-fidelity model, select the opti-
mal design (or multiple optimal designs when bat ch_size is greater than 1) from those provided in import_candidate_points_file,
and exit without running the “dummy”” high-fidelity model code. The selected design(s) will be output to the screen, as well as
to experimental_design_output.txt, as detailed above. The high-fidelity model may then be run offline with the
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newly selected design point(s).

The user must update calibration._data_file with the new high-fidelity data when it becomes available, as well as
remove the previously selected design point(s) from import_candidate_points_file. Within the Dakota input file,
initial_samples, num_experiments, and num_candidates should be correspondingly updated. Dakota may then
be run again to yield the next optimal experimental design(s). It should be noted that the stopping criteria will not be automat-
ically evaluated by Dakota when one-at-a-time implementation is used. The user must determine when the algorithm should
be terminated.

5.9 Uncertainty Quantification Usage Guidelines

The choice of uncertainty quantification method depends on how the input uncertainty is characterized, the computational
budget, and the desired output accuracy. The recommendations for UQ methods are summarized in Table 5.3 and are discussed
in the remainder of the section.

Table 5.3: Guidelines for UQ method selection.

Method Desired Problem Applicable Methods
Classification Characteristics
Sampling nonsmooth, multimodal response functions; sampling (Monte Carlo or LHS)
response evaluations are relatively inexpensive
Local smooth, unimodal response functions; local_reliability (MV, AMV/AMV?Z,
reliability larger sets of random variables; AMV+/AMV?2+, TANA, FORM/SORM)
estimation of tail probabilities
Global smooth or limited nonsmooth response; global reliability
reliability multimodal response; low dimensional;
estimation of tail probabilities
Adaptive smooth or limited nonsmooth response; importance_sampling,
Sampling multimodal response; low dimensional; gpais, adaptive_sampling,
estimation of tail probabilities pof_darts
Stochastic smooth or limited nonsmooth response; polynomial _chaos,
expansions multimodal response; low dimensional; stoch_collocation
estimation of moments or moment-based metrics
Epistemic uncertainties are poorly characterized interval: local_interval _est,
global_interval est, sampling;
BPA: local _evidence, global_evidence
Mixed UQ some uncertainties are poorly characterized nested UQ (IVP, SOP, DSTE) with epistemic
outer loop and aleatory inner loop, sampling

Sampling Methods

Sampling-based methods are the most robust uncertainty techniques available, are applicable to almost all simulations, and
possess rigorous error bounds; consequently, they should be used whenever the function is relatively inexpensive to compute
and adequate sampling can be performed. In the case of terascale computational simulations, however, the number of function
evaluations required by traditional techniques such as Monte Carlo and Latin hypercube sampling (LHS) quickly becomes
prohibitive, especially if tail statistics are needed.

Alternatively, one can apply the traditional sampling techniques to a surrogate function approximating the expensive compu-
tational simulation (see Section 15.3). However, if this approach is selected, the user should be aware that it is very difficult
to assess the accuracy of the results obtained. Unlike the case of surrogate-based local minimization (see Section 14.6.1),
there is no simple pointwise calculation to verify the accuracy of the approximate results. This is due to the functional nature
of uncertainty quantification, i.e. the accuracy of the surrogate over the entire parameter space needs to be considered, not
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just around a candidate optimum as in the case of surrogate-based local. This issue especially manifests itself when trying to
estimate low probability events such as the catastrophic failure of a system.

Reliability Methods

Local reliability methods (e.g., MV, AMV/AMV?2, AMV+/AMV?+, TANA, and FORM/SORM) are more computationally
efficient in general than the sampling methods and are effective when applied to reasonably well-behaved response func-
tions; i.e., functions that are smooth, unimodal, and only mildly nonlinear. They can be used to provide qualitative sensitivity
information concerning which uncertain variables are important (with relatively few function evaluations), or compute full
cumulative or complementary cumulative response functions (with additional computational effort). Since they rely on gradi-
ent calculations to compute local optima (most probable points of failure), they scale well for increasing numbers of random
variables, but issues with nonsmooth, discontinuous, and multimodal response functions are relevant concerns. In addition,
even if there is a single MPP and it is calculated accurately, first-order and second-order integrations may fail to accurately
capture the shape of the failure domain. In these cases, adaptive importance sampling around the MPP can be helpful. Overall,
local reliability methods should be used with some care and their accuracy should be verified whenever possible.

An effective alternative to local reliability analysis when confronted with nonsmooth, multimodal, and/or highly nonlinear
response functions is efficient global reliability analysis (EGRA). This technique employs Gaussian process global surrogate
models to accurately resolve the failure domain and then employs multimodal adaptive importance sampling to resolve the
probabilities. For relatively low dimensional problems (i.e, on the order of 10 variables), this method displays the efficiency of
local reliability analysis with the accuracy of exhaustive sampling. While extremely promising, this method is still relatively
new and is the subject of ongoing refinements as we deploy it to additional applications.

Adaptive Sampling Methods

There are now a number of methods in Dakota which are tailored to estimating tail probabilities. These methods include both
standard importance sampling and Gaussian Process Adaptive Importance Sampling, as well as adaptive sampling and the
POF-darts method. These methods are suitable for smooth or limited non-smooth responses, and work well in low dimensions.
GPAIS and POF-darts utilize a Gaussian process surrogate model.

Stochastic Expansions Methods

The next class of UQ methods available in Dakota is comprised of stochastic expansion methods (polynomial chaos and
stochastic collocation), which are general purpose techniques provided that the response functions possess finite second order
moments. Further, these methods capture the underlying functional relationship between a key response metric and its ran-
dom variables, rather than just approximating statistics such as mean and standard deviation. This class of methods parallels
traditional variational methods in mechanics; in that vein, efforts are underway to compute rigorous error bounds of the ap-
proximations produced by the methods. Another strength of these methods is their potential use in a multiphysics environment
as a means to propagate the uncertainty through a series of simulations while retaining as much information as possible at each
stage of the analysis. The current challenge in the development of these methods, as for other global surrogate-based methods,
is effective scaling for large numbers of random variables. Recent advances in adaptive collocation and sparsity detection
methods address some of the scaling issues for stochastic expansions.

Epistemic Uncertainty Quantification Methods

The final class of UQ methods available in Dakota are focused on epistemic uncertainties, or uncertainties resulting from a lack

of knowledge. In these problems, the assignment of input probability distributions when data is sparse can be somewhat sus-

pect. One approach to handling epistemic uncertainties is interval analysis (Local_interval_est and global_interval_est),
where a set of intervals on inputs, one interval for each input variable, is mapped to a set of intervals on outputs. To perform

this process efficiently, optimization methods can be used. Another related technique is Dempster-Shafer theory of evidence
(Dakota methods local_evidence and global_evidence), where multiple intervals per input variable (which can be
overlapping, contiguous, or disjoint) are propagated, again potentially using optimization methods. The choice between local

or global optimization methods for interval computation is governed by the same issues described in Section 6.4.

Mixed Aleatoric and Epistemic Methods

For problems with a mixture of epistemic and aleatoric uncertainties, it is desirable to segregate the two uncertainty types
within a nested analysis, allowing stronger probabilistic inferences for the portion of the problem where they are appropriate. In
this nested approach, an outer epistemic level selects realizations of epistemic parameters (augmented variables) and/or realiza-
tions of random variable distribution parameters (inserted variables). These realizations define the objective probabilistic anal-
ysis to be performed on the inner aleatoric level. In the case where the outer loop involves propagation of subjective probability,
the nested approach is known as second-order probability and the study generates a family of CDF/CCDF respresentations
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known as a “horse tail” plot. In the case where the outer loop is an interval propagation approach (local_interval_est
orglobal_interval_est), the nested approach is known as interval-valued probability (see also Section 8.5) . In the case
where the outer loop is an evidence-based approach (local_evidence or global_evidence), the approach generates
epistemic belief and plausibility bounds on aleatory statistics.
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Chapter 6
Optimization Capabilities

Optimization algorithms work to minimize (or maximize) an objective function, typically calculated by the user simulation
code, subject to constraints on design variables and responses. Available approaches in Dakota include well-tested and proven
gradient-based, derivative-free local, and global methods for use in science and engineering design applications. Dakota also
offers more advanced algorithms, e.g., to manage multi-objective optimization or perform surrogate-based minimization. This
chapter summarizes optimization problem formulation, standard algorithms available in Dakota (mostly through included
third-party libraries, see 6.5), some advanced capabilities, and offers usage guidelines.

6.1 Optimization Formulations

This section provides a basic introduction to the mathematical formulation of optimization, problems. The primary goal of this
section is to introduce terms relating to these topics, and is not intended to be a description of theory or numerical algorithms.
For further details, consult [6], [58], [73], [110], and [144].

A general optimization problem is formulated as follows:

minimize: f(x)
x e R"
subject to: gr <gx) <gu
h(x) =hy 6.1)

ar <Ax<ay
Acx = a;

xr, <x <Xy

where vector and matrix terms are marked in bold typeface. In this formulation, x = [z1,Z2,...,Zx] is an n-dimensional
vector of real-valued design variables or design parameters. The n-dimensional vectors, Xz, and xy, are the lower and upper
bounds, respectively, on the design parameters. These bounds define the allowable values for the elements of x, and the set of
all allowable values is termed the design space or the parameter space. A design point or a sample point is a particular set of
values within the parameter space.

The optimization goal is to minimize the objective function, f(x), while satisfying the constraints. Constraints can be cat-
egorized as either linear or nonlinear and as either inequality or equality. The nonlinear inequality constraints, g(x), are
“2-sided,” in that they have both lower and upper bounds, g, and gy, respectively. The nonlinear equality constraints, h(x),
have target values specified by h;. The linear inequality constraints create a linear system A;x, where A; is the coefficient



118 CHAPTER 6. OPTIMIZATION CAPABILITIES

matrix for the linear system. These constraints are also 2-sided as they have lower and upper bounds, ar, and ars, respectively.
The linear equality constraints create a linear system A.x, where A is the coefficient matrix for the linear system and a; are
the target values. The constraints partition the parameter space into feasible and infeasible regions. A design point is said to
be feasible if and only if it satisfies all of the constraints. Correspondingly, a design point is said to be infeasible if it violates
one or more of the constraints.

Many different methods exist to solve the optimization problem given by Equation 6.1, all of which iterate on x in some
manner. That is, an initial value for each parameter in x is chosen, the response quantities, f(x), g(x), h(x), are computed,
often by running a simulation, and some algorithm is applied to generate a new x that will either reduce the objective function,
reduce the amount of infeasibility, or both. To facilitate a general presentation of these methods, three criteria will be used in
the following discussion to differentiate them: optimization problem type, search goal, and search method.

The optimization problem type can be characterized both by the types of constraints present in the problem and by the lin-
earity or nonlinearity of the objective and constraint functions. For constraint categorization, a hierarchy of complexity exists
for optimization algorithms, ranging from simple bound constraints, through linear constraints, to full nonlinear constraints.
By the nature of this increasing complexity, optimization problem categorizations are inclusive of all constraint types up to a
particular level of complexity. That is, an unconstrained problem has no constraints, a bound-constrained problem has only
lower and upper bounds on the design parameters, a linearly-constrained problem has both linear and bound constraints, and
a nonlinearly-constrained problem may contain the full range of nonlinear, linear, and bound constraints. If all of the linear
and nonlinear constraints are equality constraints, then this is referred to as an equality-constrained problem, and if all of the
linear and nonlinear constraints are inequality constraints, then this is referred to as an inequality-constrained problem. Further
categorizations can be made based on the linearity of the objective and constraint functions. A problem where the objective
function and all constraints are linear is called a linear programming (LP) problem. These types of problems commonly arise
in scheduling, logistics, and resource allocation applications. Likewise, a problem where at least some of the objective and
constraint functions are nonlinear is called a nonlinear programming (NLP) problem. These NLP problems predominate in
engineering applications and are the primary focus of Dakota.

The search goal refers to the ultimate objective of the optimization algorithm, i.e., either global or local optimization. In
global optimization, the goal is to find the design point that gives the lowest feasible objective function value over the entire
parameter space. In contrast, in local optimization, the goal is to find a design point that is lowest relative to a “nearby”
region of the parameter space. In almost all cases, global optimization will be more computationally expensive than local
optimization. Thus, the user must choose an optimization algorithm with an appropriate search scope that best fits the problem
goals and the computational budget.

The search method refers to the approach taken in the optimization algorithm to locate a new design point that has a lower ob-
jective function or is more feasible than the current design point. The search method can be classified as either gradient-based
or nongradient-based. In a gradient-based algorithm, gradients of the response functions are computed to find the direction
of improvement. Gradient-based optimization is the search method that underlies many efficient local optimization methods.
However, a drawback to this approach is that gradients can be computationally expensive, inaccurate, or even nonexistent.
In such situations, nongradient-based search methods may be useful. There are numerous approaches to nongradient-based
optimization. Some of the more well known of these include pattern search methods (nongradient-based local techniques) and
genetic algorithms (nongradient-based global techniques).

Because of the computational cost of running simulation models, surrogate-based optimization (SBO) methods are often used
to reduce the number of actual simulation runs. In SBO, a surrogate or approximate model is constructed based on a limited
number of simulation runs. The optimization is then performed on the surrogate model. Dakota has an extensive framework
for managing a variety of local, multipoint, global, and hierarchical surrogates for use in optimization. Finally, sometimes
there are multiple objectives that one may want to optimize simultaneously instead of a single scalar objective. In this case,
one may employ multi-objective methods that are described in Section 6.3.1.

This overview of optimization approaches underscores that no single optimization method or algorithm works best for all types
of optimization problems. Section 6.4 offers guidelines for choosing a Dakota optimization algorithm best matched to your
specific optimization problem.
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6.1.1 Constraint Considerations

Dakota’s input commands permit the user to specify two-sided nonlinear inequality constraints of the form gz, < g:(x) < gu,,
as well as nonlinear equality constraints of the form h;(x) = ht;. Some optimizers (e.g., npsol., optpp-, soga, and
moga methods) can handle these constraint forms directly, whereas other optimizers (e.g., asynch_pattern_search,
dot., and conmin_, mesh_adaptive_search) require Dakota to perform an internal conversion of all constraints to
one-sided inequality constraints of the form g;(x) < 0. In the latter case, the two-sided inequality constraints are treated as
gi(x) — gu; < 0and gz, — gi(x) < 0 and the equality constraints are treated as h;(x) — ht; < 0and hy; — hj(x) < 0.
The situation is similar for linear constraints: asynch_pattern_search, npsol_, optpp-, soga, and moga methods
support them directly, whereas dot_ and conmin_ methods do not. For linear inequalities of the form ar, < al'x < ay;
and linear equalities of the form a x = a, ;» the nonlinear constraint arrays in dot_ and conmin_ methods are further
augmented to include afx —ay; <0andar, — afx < 0 in the inequality case and afx —ay; < 0 and a; — aZTx <0in
the equality case. Awareness of these constraint augmentation procedures can be important for understanding the diagnostic
data returned from the dot - and conmin_ methods. Other optimizers fall somewhere in between. n1pgl_ methods support
nonlinear equality constraints h;(x) = 0 and nonlinear one-sided inequalities g;(x) > 0, but does not natively support
linear constraints. Constraint mappings are used with NLPQL for both linear and nonlinear cases. Most coliny_ methods
now support two-sided nonlinear inequality constraints and nonlinear constraints with targets, but do not natively support
linear constraints. ROL’s (rol) augmented Lagrangian method converts inequality constraints into equality constraints with
bounded slack variables. This conversion is performed internally within ROL, but might explain potentially weak convergence
rates for problems with large number of inequality constraints.

When gradient and Hessian information is used in the optimization, derivative components are most commonly computed
with respect to the active continuous variables, which in this case are the continuous design variables. This differs from
parameter study methods (for which all continuous variables are active) and from non-deterministic analysis methods (for
which the uncertain variables are active). Refer to Section 11.3 for additional information on derivative components and active
continuous variables.

6.2 Optimizing with Dakota: Choosing a Method

This section summarizes the optimization methods available in Dakota. We group them according to search method and search
goal and establish their relevance to types of problems. For a summary of this discussion, see Section 6.4.

6.2.1 Gradient-Based Local Methods

Gradient-based optimizers are best suited for efficient navigation to a local minimum in the vicinity of the initial point. They
are not intended to find global optima in nonconvex design spaces. For global optimization methods, see 6.2.3. Gradient-based
optimization methods are highly efficient, with the best convergence rates of all of the local optimization methods, and are the
methods of choice when the problem is smooth, unimodal, and well-behaved. However, these methods can be among the least
robust when a problem exhibits nonsmooth, discontinuous, or multimodal behavior. The derivative-free methods described
in 6.2.2 are more appropriate for problems with these characteristics.

Gradient accuracy is a critical factor for gradient-based optimizers, as inaccurate derivatives will often lead to failures in
the search or pre-mature termination of the method. Analytic gradients and Hessians are ideal but often unavailable. If
analytic gradient and Hessian information can be provided by an application code, a full Newton method will achieve quadratic
convergence rates near the solution. If only gradient information is available and the Hessian information is approximated
from an accumulation of gradient data, superlinear convergence rates can be obtained. It is most often the case for engineering
applications, however, that a finite difference method will be used by the optimization algorithm to estimate gradient values.
Dakota allows the user to select the step size for these calculations, as well as choose between forward-difference and central-
difference algorithms. The finite difference step size should be selected as small as possible, to allow for local accuracy and
convergence, but not so small that the steps are “in the noise.” This requires an assessment of the local smoothness of the
response functions using, for example, a parameter study method. Central differencing will generally produce more reliable
gradients than forward differencing but at roughly twice the expense.
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Gradient-based methods for nonlinear optimization problems can be described as iterative processes in which a sequence of
subproblems, usually which involve an approximation to the full nonlinear problem, are solved until the solution converges to
a local optimum of the full problem. The optimization methods available in Dakota fall into several categories, each of which
is characterized by the nature of the subproblems solved at each iteration.

6.2.1.1 Methods for Unconstrained Problems

For unconstrained problems, conjugate gradient methods can be applied which require first derivative information. The sub-
problems entail minimizing a quadratic function over a space defined by the gradient and directions that are mutually conjugate
with respect to the Hessian. There are a couple of options in terms of methods to be used strictly for unconstrained problems,
namely the Polak-Ribiere conjugate gradient method (optpp-cg) and ROL’s (Rapid Optimization Library for large-scale
optimization, part of the Trilinos software suite [92]) trust-region method with truncated conjugate gradient subproblem solver
(rol). ROL relies on secant updates for the Hessian, with the an approximation to the Hessian matrix at each iteration
provided using only values of the gradient at current and previous iterates.

Note that ROL has been developed for, and mostly applied to, problems with analytic gradients/Hessians. Nonetheless, ROL
can be used with Dakota-, or vendor-, provided finite-differencing approximations to the gradient of the objective function.
However, a user relying on such approximations is advised to resort to alternative optimizers that exhibit better performance
in those scenarios.

6.2.1.2 Methods for Bound-Constrained Problems

For bound-constrained problems, both conjugate gradient methods and quasi-Newton methods (described in the next sub-
section) are available in Dakota. For conjugate gradient methods, the Fletcher-Reeves conjugate gradient method (conmin_frcg
and dot_frcg [145]) and ROL’s trust-region method with truncated conjugate gradient subproblem solver (rol) are avail-
able. Note that ROL exhibits slow/erratic convergence when finite-differencing approximations to the gradient of objective
function are used. DOT (dot bfgs) provides a quasi-Newton method for such problems. We here provide a caution regard-
ing dot_frcg. In DOT Version 4.20, we have noticed inconsistent behavior of this algorithm across different versions of
Linux. Our best assessment is that it is due to different treatments of uninitialized variables. As we do not know the intention
of the code authors and maintaining DOT source code is outside of the Dakota project scope, we have not made nor are we
recommending any code changes to address this. However, all users who use dot_frcgin DOT Version 4.20 should be aware
that results may not be reliable.

6.2.1.3 Methods for Constrained Problems

For constrained problems, the available methods fall under one of four categories, namely Sequential Quadratic Programming
(SQP) methods, Newton methods, Method of Feasible Directions (MFD) methods, and the augmented Lagrangian method.

Sequential Quadratic Programming (SQP) methods are appropriate for nonlinear optimization problems with nonlinear con-
straints. Each subproblem involves minimizing a quadratic approximation the Lagrangian subject to linearized constraints.
Only gradient information is required; Hessians are approximated by low-rank updates defined by the step taken at each iter-
ations. It is important to note that while the solution found by an SQP method will respect the constraints, the intermediate
iterates may not. SQP methods available in Dakota include dot_sqp, nlpgl_sqgp, and npsol_sqgp [57]. The particular
implementation in n1pgl_sqgp [121] uses a variant with distributed and non-monotone line search. Thus, this variant is de-
signed to be more robust in the presence of inaccurate or noisy gradients common in many engineering applications. ROL’s
composite-step method (rol), utilizing SQP with trust regions, for equality-constrained problems is another option (Note that
ROL exhibits slow/erratic convergence when finite-differencing approximations to the gradient of objective and constraints
are used). Also available is a method related to SQP: sequential linear programming (dot_s1p).

Newton Methods can be applied to nonlinear optimization problems with nonlinear constraints. The subproblems associated
with these methods entail finding the solution to a linear system of equations derived by setting the derivative of a second-
order Taylor series expansion to zero. Unlike SQP methods, Newton methods maintain feasibility over the course of the
optimization iterations. The variants of this approach correspond to the amount of derivative information provided by the
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user. The full Newton method (optpp-newt on) expects both gradients and Hessians to be provided. Quasi-Newton methods
(optpp-g-newton) expect only gradients. The Hessian is approximated by the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
low-rank updates. Finally, the finite difference Newton method (optpp-fd_-newton) expects only gradients and approxi-
mates the Hessian with second-order finite differences.

Method of Feasible Directions (MFD) methods are appropriate for nonlinear optimization problems with nonlinear constraints.
These methods ensure that all iterates remain feasible. Dakota includes conmin_mfd [143] and dot _mmfd One observed
drawback to conmin_mfd is that it does a poor job handling equality constraints. dot _mmfd does not suffer from this
problem, nor do other methods for constrained problems.

The augmented Lagrangian method provides a strategy to handle equality and inequality constraints by introducing the aug-
mented Lagrangian function, combining the use of Lagrange multipliers and a quadratic penalty term. It is implemented in
ROL (ro1l) exhibiting scalable performance for large-scale problems. As previously stated, ROL exhibits slow/erratic con-
vergence when finite-differencing approximations to the gradient of objective function and/or constraints are used. Users are
advised to resort to alternative optimizers until performance of ROL improves in future releases.

6.2.1.4 Example

We refer the reader to Section 2.3.3 for this example.

6.2.2 Derivative-Free Local Methods

Derivative-free methods can be more robust and more inherently parallel than gradient-based approaches. They can be applied
in situations were gradient calculations are too expensive or unreliable. In addition, some derivative-free methods can be used
for global optimization which gradient-based techniques (see 6.2.1), by themselves, cannot. For these reasons, derivative-free
methods are often go-to methods when the problem may be nonsmooth, multimodal, or poorly behaved. It is important to
be aware, however, that they exhibit much slower convergence rates for finding an optimum, and as a result, tend to be much
more computationally demanding than gradient-based methods. They often require from several hundred to a thousand or
more function evaluations for local methods, depending on the number of variables, and may require from thousands to tens-
of-thousands of function evaluations for global methods. Given the computational cost, it is often prudent to use derivative-free
methods to identify regions of interest and then use gradient-based methods to home in on the solution. In addition to slow
convergence, nonlinear constraint support in derivative-free methods is an open area of research and, while supported by many
methods in Dakota, is not as refined as constraint support in gradient-based methods.

6.2.2.1 Method Descriptions

Pattern Search methods can be applied to nonlinear optimization problems with nonlinear. They generally walk through
the domain according to a defined stencil of search directions. These methods are best suited for efficient navigation to a
local minimum in the vicinity of the initial point; however, they sometimes exhibit limited global identification abilities if
the stencil is such that it allows them to step over local minima. There are two main pattern search methods available in
Dakota, and they vary according to richness of available stencil and the way constraints supported. Asynchronous Parallel
Pattern Search (APPS) [68] (asynch_pattern_search) uses the coordinate basis as its stencil, and it handles nonlinear
constraints explicitly through modification of the coordinate stencil to allow directions that parallel constraints [69]. A second
variant of pattern search, coliny_pattern_search, has the option of using either a coordinate or a simplex basis as well
as allowing more options for the stencil to evolve over the course of the optimization. It handles nonlinear constraints through
the use of penalty functions. The mesh_adaptive_search [7], [1], [96] is similar in spirit to and falls in the same class of
methods as the pattern search methods. The primary difference is that its underlying search structure is that of a mesh. The
mesh_adaptive_search also provides a unique optimization capability in Dakota in that it can explicitly treat categorical
variables, i.e., non-relaxable discrete variables as described in Section 9.2.2. Furthermore, it provides the ability to use a
surrogate model to inform the priority of function evaluations with the goal of reducing the number needed.

Simplex methods for nonlinear optimization problem are similar to pattern search methods, but their search directions are
defined by triangles that are reflected, expanded, and contracted across the variable space. The two simplex-based methods
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available in Dakota are the Parallel Direct Search method [27] (optpp-pds) and the Constrained Optimization BY Linear
Approximations (COBYLA) (coliny_cobyla). The former handles only bound constraints, while the latter handles non-
linear constraints. One drawback of both simplex-based methods is that their current implementations do not allow them to
take advantage of parallel computing resources via Dakota’s infrastructure. Additionally, we note that the implementation of
COBYLA is such that the best function value is not always returned to Dakota for reporting. The user is advised to look through
the Dakota screen output or the tabular output file (if generated) to confirm what the best function value and corresponding
parameter values are. Furthermore, COBYLA does not always respect bound constraints when scaling is turned on. Neither
bug will be fixed, as maintaining third-party source code (such as COBYLA) is outside of the Dakota project scope.

A Greedy Search Heuristic for nonlinear optimization problems is captured in the Solis-Wets (coliny_solis_wets)
method. This method takes a sampling-based approach in order to identify search directions. Note that one observed drawback
to coliny_solis_wets is that it does a poor job solving problems with nonlinear constraints. This algorithm is also not
implemented in such a way as to take advantage of parallel computing resources via Dakota’s infrastructure.

Nonlinear Optimization with Path Augmented Constraints (NOWPAC) is a provably-convergent gradient-free inequality-
constrained optimization method that solves a series of trust region surrogate-based subproblems to generate improving steps.
Due to its use of an interior penalty scheme and enforcement of strict feasibility, nowpac [9] does not support linear or
nonlinear equality constraints. The stochastic version is snowpac, which incorporates noise estimates in its objective and
inequality constraints. snowpac modifies its trust region controls and adds smoothing from a Gaussian process surrogate in
order to mitigate noise. Note that as opposed to the stochastic version (snowpac), nowpac does not currently support a
feasibility restoration mode, so it is necessary to start from a feasible design. Also note that (s)nowpac is not configured
with Dakota by default and requires a separate installation of the NOWPAC distribution, along with third-party libraries Eigen
and NLOPT.

6.2.2.2 Example

The Dakota input file shown in Figure 6.1 applies a pattern search method to minimize the Rosenbrock function. We note
that this example is used as a means of demonstrating the contrast between input files for gradient-based and derivative-free
optimization. Since derivatives can be computed analytically and efficiently, the preferred approach to solving this problem is
a gradient-based method.

The Dakota input file shown in Figure 6.1 is similar to the input file for the gradient-based optimization, except it has a different
set of keywords in the method block of the input file, and the gradient specification in the responses block has been changed
to no_gradients. The pattern search optimization algorithm used, coliny _pattern_search is part of the SCOLIB
library [75]. See the Dakota Reference Manual [3] for more information on the methods block commands that can be used
with SCOLIB algorithms.

For this run, the optimizer was given an initial design point of (z1,2z2) = (0.0,0.0) and was limited to 2000 function
evaluations. In this case, the pattern search algorithm stopped short of the optimum at (z1,z2) = (1.0, 1, 0), although it was
making progress in that direction when it was terminated. (It would have reached the minimum point eventually.)

The iteration history is provided in Figures 6.2(a) and (b), which show the locations of the function evaluations used in the
pattern search algorithm. Figure 6.2(c) provides a close-up view of the pattern search function evaluations used at the start
of the algorithm. The coordinate pattern is clearly visible at the start of the iteration history, and the decreasing size of the
coordinate pattern is evident at the design points move toward (z1, z2) = (1.0, 1.0).

While pattern search algorithms are useful in many optimization problems, this example shows some of the drawbacks to this
algorithm. While a pattern search method may make good initial progress towards an optimum, it is often slow to converge.
On a smooth, differentiable function such as Rosenbrock’s function, a nongradient-based method will not be as efficient as a
gradient-based method. However, there are many engineering design applications where gradient information is inaccurate or
unavailable, which renders gradient-based optimizers ineffective. Thus, pattern search algorithms are often good choices in
complex engineering applications when the quality of gradient data is suspect.
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# Dakota Input File: rosen_opt_patternsearch.in

environment
tabular_data
tabular_data_file = ’'rosen_opt_patternsearch.dat’

method

coliny_pattern_search
initial _delta = 0.5
solution_target = le-4
exploratory_moves

basic_pattern

contraction_factor = 0.75
max_iterations = 1000
max_function_evaluations = 2000
variable_tolerance = le-4

model
single

variables
continuous_design =
initial_point 0 0.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"

interface
analysis_drivers = ’'rosenbrock’
direct

responses
objective_functions = 1
no_gradients
no_hessians

Figure 6.1: Rosenbrock pattern search optimization example: the Dakota input file — see dakota/share/
dakota/examples/users/rosen_opt_patternsearch.in

6.2.3 Derivative-Free Global Methods

The discussion of derivative-free global methods is identical to that in 6.2.2, so we forego repeating it here. There are two
types of global optimization methods in Dakota.

6.2.3.1 Method Descriptions

Evolutionary Algorithms (EA) are based on Darwin’s theory of survival of the fittest. The EA algorithm starts with a
randomly selected population of design points in the parameter space, where the values of the design parameters form a
“genetic string,” analogous to DNA in a biological system, that uniquely represents each design point in the population. The EA
then follows a sequence of generations, where the best design points in the population (i.e., those having low objective function
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Figure 6.2: Rosenbrock pattern search optimization example: (a) screen capture of the legacy Dakota X windows-
based graphics, (b) sequence of design points (dots) evaluated and (c) close-up view illustrating the shape of the
coordinate pattern used.

values) are considered to be the most “fit”” and are allowed to survive and reproduce. The EA simulates the evolutionary process
by employing the mathematical analogs of processes such as natural selection, breeding, and mutation. Ultimately, the EA
identifies a design point (or a family of design points) that minimizes the objective function of the optimization problem.
An extensive discussion of EAs is beyond the scope of this text, but may be found in a variety of sources (cf., [73] pp.
149-158; [65]). EAs available in Dakota include coliny_ea, soga, and moga. The latter is specifically designed for
multi-objective problems, discussed further in 6.3. All variants can optimize over discrete variables, including discrete string
variables, in addition to continuous variables. We note that an experimental branch and bound capability is being matured to
provide a gradient-based approach to solving mixed variable global optimization problems. One key distinction is that it does
not handle categorical variables (e.g., string variables). The branch and bound method is discussed further in Section 14.5.

DIvision of RECTangles (DIRECT) [52] balances local search in promising regions of the design space with global search
in unexplored regions. It adaptively subdivides the space of feasible design points to guarantee that iterates are generated in
the neighborhood of a global minimum in finitely many iterations. Dakota includes two implementations (ncsu-direct
and coliny_direct. In practice, DIRECT has proven an effective heuristic for many applications. For some problems, the
ncsu-direct implementation has outperformed the coliny_direct implementation. ncsu_direct can accommodate
only bound constraints, while coliny_direct handles nonlinear constraints using a penalty formulation of the problem.
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Efficient Global Optimization (EGO) is a global optimization technique that employs response surface surrogates [86, 82].
In each EGO iteration, a Gaussian process (GP) approximation for the objective function is constructed based on sample points
of the true simulation. The GP allows one to specify the prediction at a new input location as well as the uncertainty associated
with that prediction. The key idea in EGO is to maximize an Expected Improvement Function (EIF), defined as the expectation
that any point in the search space will provide a better solution than the current best solution, based on the expected values
and variances predicted by the GP model. It is important to understand how the use of this EIF leads to optimal solutions. The
EIF indicates how much the objective function value at a new potential location is expected to be less than the predicted value
at the current best solution. Because the GP model provides a Gaussian distribution at each predicted point, expectations can
be calculated. Points with good expected values and even a small variance will have a significant expectation of producing a
better solution (exploitation), but so will points that have relatively poor expected values and greater variance (exploration).
The EIF incorporates both the idea of choosing points which minimize the objective and choosing points about which there is
large prediction uncertainty (e.g., there are few or no samples in that area of the space, and thus the probability may be high
that a sample value is potentially lower than other values). Because the uncertainty is higher in regions of the design space
with few observations, this provides a balance between exploiting areas of the design space that predict good solutions, and
exploring areas where more information is needed.

There are two major differences between our implementation and that of [86]: we do not use a branch and bound method to
find points which maximize the EIF. Rather, we use the DIRECT algorithm. Second, we allow for multiobjective optimization
and nonlinear least squares including general nonlinear constraints. Constraints are handled through an augmented Lagrangian
merit function approach (see Surrogate-Based Minimization chapter in Dakota Theory Manual [24]).

6.2.3.2 Examples

Evolutionary algorithm: In contrast to pattern search algorithms, which are local optimization methods, evolutionary al-
gorithms (EA) are global optimization methods. As was described above for the pattern search algorithm, the Rosenbrock
function is not an ideal test problem for showcasing the capabilities of evolutionary algorithms. Rather, EAs are best suited
to optimization problems that have multiple local optima, and where gradients are either too expensive to compute or are not
readily available.

Figure 6.3 shows a Dakota input file that uses an EA to minimize the Rosenbrock function. For this example the EA has a
population size of 50. At the start of the first generation, a random number generator is used to select 50 design points that
will comprise the initial population. [A specific seed value is used in this example to generate repeatable results, although, in
general, one should use the default setting which allows the EA to choose a random seed.] A two-point crossover technique
is used to exchange genetic string values between the members of the population during the EA breeding process. The result
of the breeding process is a population comprised of the 10 best “parent” design points (elitist strategy) plus 40 new “child”
design points. The EA optimization process will be terminated after either 100 iterations (generations of the EA) or 2,000
function evaluations. The EA software available in Dakota provides the user with much flexibility in choosing the settings
used in the optimization process. See [3] and [75] for details on these settings.

The EA optimization results printed at the end of this file show that the best design point found was (z1,z2) = (0.98,0.95).
The file ea_tabular.dat.sav provides a listing of the design parameter values and objective function values for all
2,000 design points evaluated during the running of the EA. Figure 6.4(a) shows the population of 50 randomly selected
design points that comprise the first generation of the EA, and Figure 6.4(b) shows the final population of 50 design points,
where most of the 50 points are clustered near (z1, z2) = (0.98,0.95).

As described above, an EA is not well-suited to an optimization problem involving a smooth, differentiable objective such
as the Rosenbrock function. Rather, EAs are better suited to optimization problems where conventional gradient-based opti-
mization fails, such as situations where there are multiple local optima and/or gradients are not available. In such cases, the
computational expense of an EA is warranted since other optimization methods are not applicable or impractical. In many
optimization problems, EAs often quickly identify promising regions of the design space where the global minimum may be
located. However, an EA can be slow to converge to the optimum. For this reason, it can be an effective approach to combine
the global search capabilities of a EA with the efficient local search of a gradient-based algorithm in a hybrid optimization
strategy. In this approach, the optimization starts by using a few iterations of a EA to provide the initial search for a good
region of the parameter space (low objective function and/or feasible constraints), and then it switches to a gradient-based al-
gorithm (using the best design point found by the EA as its starting point) to perform an efficient local search for an optimum
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# Dakota Input File: rosen_opt_ea.in

environment
tabular_data
tabular_data_file = 'rosen_opt_ea.dat’

method
coliny_ea

max_iterations = 100
max_function_evaluations = 2000
seed = 11011011
population_size = 50
fitness_type merit_function
mutation_type offset_normal
mutation_rate 1.0
crossover_type two_point
crossover_rate 0.0
replacement_type chc = 10

model
single
variables
continuous_design = 2
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
interface
analysis_drivers = ’rosenbrock’
direct
responses
objective_functions = 1

no_gradients
no_hessians

Figure 6.3: Rosenbrock evolutionary algorithm optimization example: the Dakota input file — see dakota/
share/dakota/examples/users/rosen_opt_ea.in

design point. More information on this hybrid approach is provided in Section 14.2.

Efficient Global Optimization: The method is specified as efficient_global. Currently we do not expose any specifi-
cation controls for the underlying Gaussian process model used or for the optimization of the expected improvement function,
which is currently performed by the NCSU DIRECT algorithm. The only item the user can specify is a seed which is used
in the Latin Hypercube Sampling to generate the initial set of points which is used to construct the initial Gaussian process.
Parallel optimization with multiple concurrent evaluations is possible by adjusting the batch size, which is consisted of two
smaller batches. The first batch aims at maximizing the acquisition function, where the second batch promotes the exploration
by maximizing the variance. An example specification for the EGO algorithm is shown in Figure 6.5.
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Figure 6.4: Rosenbrock evolutionary algorithm optimization example: 50 design points in the (a) initial and (b)
final populations selected by the evolutionary algorithm.

6.3 Additional Optimization Capabilities

Dakota provides several capabilities which extend the services provided by the optimization software packages described in
Sections 6.2.1 through 6.2.3. Those described in this section include:

* Multiobjective optimization: There are three capabilities for multiobjective optimization in Dakota. The first is
MOGA, described above in Section 6.2.3.1. The second is the Pareto-set strategy, described in Section 14.4. The third
is a weighting factor approach for multiobjective reduction, in which a composite objective function is constructed from
a set of individual objective functions using a user-specified set of weighting factors. These latter two approaches work
with any of the above single objective algorithms.

* Scaling, where any optimizer (or least squares solver described in Section 7.4), can accept user-specified (and in some
cases automatic or logarithmic) scaling of continuous design variables, objective functions (or least squares terms), and
constraints. Some optimization algorithms are sensitive to the relative scaling of problem inputs and outputs, and this
feature can help.

The Advanced Methods Chapter 14 offers details on the following component-based meta-algorithm approaches:

¢ Sequential Hybrid Minimization: This meta-algorithm allows the user to specify a sequence of minimization meth-
ods, with the results from one method providing the starting point for the next method in the sequence. An example
which is useful in many engineering design problems involves the use of a nongradient-based global optimization
method (e.g., genetic algorithm) to identify a promising region of the parameter space, which feeds its results into a
gradient-based method (quasi-Newton, SQP, etc.) to perform an efficient local search for the optimum point.

e Multistart Local Minimization: This meta-algorithm uses many local minimization runs (often gradient-based), each
of which is started from a different initial point in the parameter space. This is an attractive approach in situations where
multiple local optima are known to exist or may potentially exist in the parameter space. This approach combines the
efficiency of local minimization methods with the parameter space coverage of a global stratification technique.

¢ Pareto-Set Minimization: The Pareto-set minimization strategy allows the user to specify different sets of weights for
either the individual objective functions in a multiobjective optimization problem or the individual residual terms in a
least squares problem. Dakota executes each of these weighting sets as a separate minimization problem, serially or in
parallel, and then outputs the set of optimal designs which define the Pareto set. Pareto set information can be useful in
making trade-off decisions in engineering design problems.
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# Dakota Input File: rosen_opt_ego.in

environment
tabular_data
tabular_data_file = 'rosen_opt_ego.dat’

method
efficient_global
seed = 123456

variables
continuous_design = 2
lower_bounds -2.0
upper_bounds 2.0
"x1

-2.0
2.0
descriptors "x27

14
interface

analysis_drivers = ’rosenbrock’
direct

responses
objective_functions = 1
no_gradients
no_hessians

Figure 6.5: Dakota input file for the efficient global optimization example — see dakota/share/dakota/

examples/users/rosen_opt_ego.in
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6.3.1 Multiobjective Optimization

Multiobjective optimization refers to the simultaneous optimization of two or more objective functions. Often these are
competing objectives, such as cost and performance. The optimal design in a multi-objective problem is usually not a single
point. Rather, it is a set of points called the Pareto front. Each point on the Pareto front satisfies the Pareto optimality criterion,
which is stated as follows: a feasible vector X ™ is Pareto optimal if there exists no other feasible vector X which would
improve some objective without causing a simultaneous worsening in at least one other objective. Thus, if a feasible point X’
exists that CAN be improved on one or more objectives simultaneously, it is not Pareto optimal: it is said to be “dominated”
and the points along the Pareto front are said to be “non-dominated.”

There are three capabilities for multiobjective optimization in Dakota. First, there is the MOGA capability described pre-
viously in Section 6.2.3.1. This is a specialized algorithm capability. The second capability involves the use of response
data transformations to recast a multiobjective problem as a single-objective problem. Currently, Dakota supports the simple
weighted sum approach for this transformation, in which a composite objective function is constructed from a set of individual
objective functions using a user-specified set of weighting factors. This approach is optimization algorithm independent, in
that it works with any of the optimization methods listed previously in this chapter. The third capability is the Pareto-set
meta-algorithm described in Section 14.4. This capability also utilizes the multiobjective response data transformations to
allow optimization algorithm independence; however, it builds upon the basic approach by computing sets of optima in order
to generate a Pareto trade-off surface.

In the multiobjective transformation approach in which multiple objectives are combined into one, an appropriate single-
objective optimization technique is used to solve the problem. The advantage of this approach is that one can use any number
of optimization methods that are especially suited for the particular problem class. One disadvantage of the weighted sum
transformation approach is that a linear weighted sum objective will only find one solution on the Pareto front. Since each
optimization of a single weighted objective will find only one point near or on the Pareto front, many optimizations need
to be performed to get a good parametric understanding of the influence of the weights. Thus, this approach can become
computationally expensive.

A multiobjective optimization problem is indicated by the specification of multiple (R) objective functions in the responses
keyword block (i.e., the objective_functions specification is greater than 1). The weighting factors on these objective
functions can be optionally specified using the weights keyword (the default is equal weightings %). The composite ob-
jective function for this optimization problem, F', is formed using these weights as follows: F' = Z,}::l wg, fr, where the f,
terms are the individual objective function values, the wy, terms are the weights, and R is the number of objective functions.
The weighting factors stipulate the relative importance of the design concerns represented by the individual objective func-
tions; the higher the weighting factor, the more dominant a particular objective function will be in the optimization process.
Constraints are not affected by the weighting factor mapping; therefore, both constrained and unconstrained multiobjective
optimization problems can be formulated and solved with Dakota, assuming selection of an appropriate constrained or uncon-
strained single-objective optimization algorithm. When both multiobjective weighting and scaling are active, response scaling
is applied prior to weighting.

6.3.1.1 Multiobjective Example 1

Figure 6.6 shows a Dakota input file for a multiobjective optimization problem based on the “textbook” test problem. In the
standard textbook formulation, there is one objective function and two constraints. In the multiobjective textbook formulation,
all three of these functions are treated as objective functions (objective_functions = 3), with weights given by the
weights keyword. Note that it is not required that the weights sum to a value of one. The multiobjective optimization
capability also allows any number of constraints, although none are included in this example.

Figure 6.7 shows an excerpt of the results for this multiobjective optimization problem, with output in verbose mode. The
data for function evaluation 9 show that the simulator is returning the values and gradients of the three objective functions and
that this data is being combined by Dakota into the value and gradient of the composite objective function, as identified by the
header “Multiobjective transformation:”. This combination of value and gradient data from the individual ob-
jective functions employs the user-specified weightings of . 7, .2, and . 1. Convergence to the optimum of the multiobjective
problem is indicated in this case by the gradient of the composite objective function going to zero (no constraints are active).

Dakota Version 6.15 User’s Manual generated on November 10, 2021



130 CHAPTER 6. OPTIMIZATION CAPABILITIES

# Dakota Input File: textbook_opt_multiobjl.in

environment
tabular_data
tabular_data_file = ’textbook_opt_multiobjl.dat’

method
## (NPSOL requires a software license; if not available, try
## conmin_frcg or optpp_g newton instead)
npsol_sqgp
convergence_tolerance = 1.e-8

variables
continuous_design = 2
initial_point 0
upper_bounds 5.
lower_bounds 0
descriptors !

interface
analysis_drivers = ’'text_book’
direct

responses
objective_functions = 3
weights = .7 .2 .1
analytic_gradients
no_hessians

Figure 6.6: Example Dakota input file for multiobjective optimization — see dakota/share/dakota/
examples/users/textbook_opt_multiobjl.in
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Parameters for function evaluation 9:
5.9388064483e-01 x1
7.4158741198e-01 x2

(text_book /tmp/fileFNNH3v /tmp/fileRktLe9)
Removing /tmp/fileFNNH3v and /tmp/fileRktLe9

Active response data for function evaluation 9:
Active set vector = { 3 3 3 } Deriv vars vector = { 1 2 }
3.1662048106e-02 obj_fn_1
-1.8099485683e-02 obj_fn_2
2.5301156719e-01 obj_fn_3
[ =2.6792982175e-01 -6.9024137415e-02 ] obj_fn_1 gradient
[ 1.1877612897e+00 -5.0000000000e-01 ] obj_fn_2 gradient
[ -5.0000000000e-01 1.4831748240e+00 ] obj_fn_3 gradient

Multiobjective transformation:
4.3844693257e-02 obj_fn
[ 1.3827084219%9e-06 5.8620632776e-07 ] obj_fn gradient
7 1 1.0E+00 9 4.38446933E-02 1.5E-06 2 T TT

Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 0.4384469E-01

Figure 6.7: Dakota results for the multiobjective optimization example.
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By performing multiple optimizations for different sets of weights, a family of optimal solutions can be generated which define
the trade-offs that result when managing competing design concerns. This set of solutions is referred to as the Pareto set.
Section 14.4 describes an algorithm for directly generating the Pareto set in order to investigate the trade-offs in multiobjective
optimization problems.

6.3.1.2 Multiobjective Example 2

This example illustrates the use of multi-objective optimization based on a genetic algorithm method. This method is
called moga. It is based on the idea that as the population evolves in a GA, solutions that are non-dominated are cho-
sen to remain in the population. The MOGA algorithm has separate fitness assessment and selection operators called the
domination_count fitness assessor and below_limit selector respectively. This approach of selection works especially
well on multi-objective problems because it has been specifically designed to avoid problems with aggregating and scaling ob-
jective function values and transforming them into a single objective. Instead, the fitness assessor works by ranking population
members such that their resulting fitness is a function of the number of other designs that dominate them. The below_limit
selector then chooses designs by considering the fitness of each. If the fitness of a design is above a certain limit, which in
this case corresponds to a design being dominated by more than a specified number of other designs, then it is discarded.
Otherwise it is kept and selected to go to the next generation. The one catch is that this selector will require that a minimum
number of selections take place. The shrinkage_percentage determines the minimum number of selections that will
take place if enough designs are available. It is interpreted as a percentage of the population size that must go on to the sub-
sequent generation. To enforce this, the below_1imit selector makes all the selections it would make anyway and if that
is not enough, it relaxes its limit and makes selections from the remaining designs. It continues to do this until it has made
enough selections. The moga method has many other important features. Complete descriptions can be found in the Dakota
Reference Manual [3].

We demonstrate the MOGA algorithm on three examples that are taken from a multiobjective evolutionary algorithm (MOEA)
test suite described by Van Veldhuizen et. al. in [16]. These three examples illustrate the different forms that the Pareto set
may take. For each problem, we describe the Dakota input and show a graph of the Pareto front. These problems are all solved
with the moga method. The first example is presented below, the other two examples are presented in the additional examples
chapter 20.8.1 and 20.8.2.

In Van Veldhuizen’s notation, the set of all Pareto optimal design configurations (design variable values only) is denoted P* or
P:irue and is defined as:

P ={recQ|-32 €Q f()=f(x)}

The Pareto front, which is the set of objective function values associated with the Pareto optimal design configurations, is
denoted PF* or PF:rue and is defined as:

PF* = {a=J = (fila),.... fu(@)) |x € P"}

The values calculated for the Pareto set and the Pareto front using the moga method are close to but not always exactly the true
values, depending on the number of generations the moga is run, the various settings governing the GA, and the complexity of
the Pareto set.

The first test problem is a case where Py is connected and P Fi,. is concave. The problem is to simultaneously optimize
f1 and fo given three input variables, 1, 2, and x3, where the inputs are bounded by —4 < x; < 4:

Figure 6.8 shows an input file that demonstrates some of the multi-objective capabilities available with the moga method.

In this example, the three best solutions (as specified by final_solutions =3) are written to the output. Additionally,
final results from moga are output to a file called finaldatal.dat in the directory in which you are running. This
finaldatal.dat file is simply a list of inputs and outputs. Plotting the output columns against each other allows one to
see the Pareto front generated by moga. Figure 6.9 shows an example of the Pareto front for this problem. Note that a Pareto
front easily shows the trade-offs between Pareto optimal solutions. For instance, look at the point with f1 and 2 values equal
to (0.9, 0.23). One cannot improve (minimize) the value of objective function f1 without increasing the value of f2: another
point on the Pareto front, (0.63, 0.63) represents a better value of objective f1 but a worse value of objective f2.
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# Dakota Input File: mogatestl.in

environment
tabular_data
tabular_data_file = ’'mogatestl.dat’

method

moga
seed = 10983

max_function_evaluations = 2500

initialization_type unique_random

crossover_type shuffle_random
num_offspring = 2 num_parents = 2
crossover_rate = 0.8

mutation_type replace_uniform
mutation_rate = 0.1

fitness_type domination_count

replacement_type below_limit = 6
shrinkage_fraction = 0.9

convergence_type metric_tracker
percent_change = 0.05 num_generations = 40

final_solutions = 3

output silent

variables
continuous_design = 3
initial_point 0 0 0]
upper_bounds 4 4 4
lower_bounds -4 -4 -4
descriptors rx1’ 'x2" 'x3’
interface
analysis_drivers = "'mogatestl’
direct
responses
objective_functions = 2

no_gradients
no_hessians

Figure 6.8: Multiple objective genetic algorithm (MOGA) example: the Dakota input file — see dakota/
share/dakota/examples/users/mogatestl.in
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MOGA Test Problem #1 - Concave Pareto Frontier
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Figure 6.9: Multiple objective genetic algorithm (MOGA) example: Pareto front showing trade-offs between
functions f1 and 2.

6.3.2 Optimization with User-specified or Automatic Scaling

Some optimization problems involving design variables, objective functions, or constraints on vastly different scales may
be solved more efficiently if these quantities are adjusted to a common scale (typically on the order of unity). With any
optimizer (or least squares solver described in Section 7.4), user-specified characteristic value scaling may be applied to any
of continuous design variables, functions/residuals, nonlinear inequality and equality constraints, and linear inequality and
equality constraints. Automatic scaling is available for variables or responses with one- or two-sided bounds or equalities and
may be combined with user-specified scaling values. Logarithmic (log; ) scaling is available and may also be combined with
characteristic values. Log scaling is not available for linear constraints. Moreover, when continuous design variables are log
scaled, linear constraints are not permitted in the problem formulation. Discrete variable scaling is not supported.

Scaling is enabled on a per-method basis for optimizers and calibration (least squares and Bayesian) methods by including
the scaling keyword in the relevant method specification in the Dakota input file. When scaling is enabled, variables,
functions, gradients, Hessians, etc., are transformed such that the optimizer iterates in the scaled variable/response space,
whereas evaluations of the computational model as specified in the interface are performed on the original problem scale.
Therefore using scaling does not require rewriting the interface to the simulation code. When the scaling keyword is
absent, all other scale type and value specifications described below are ignored in the corresponding method, variables, and
responses sections. When the method’s output level is set above normal, scaling initialization and diagnostic information
will be printed.

Scaling for a particular variable or response type is enabled through the xscale_types and/or xscales specifications
(see the Reference Manual method section and references contained therein for a complete keyword list). Valid options for the
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string-valued xscale_types specifications include ' value’, " auto’, or ' log’, for characteristic value, automatic, or
logarithmic scaling, respectively (although not all types are valid for scaling all entities). If a single string is specified with
any of these keywords it will apply to each component of the relevant vector, e.g., with cont inuous_design=3, scale_
types=’value’ will enable characteristic value scaling for each of the 3 continuous design variables.

One may specify no, one, or a vector of characteristic scale values through the «scales specifications. These characteristic
values are required for ’ value’, and optional for auto’ and ’ log’. If scales are specified, but not scale types, value
scaling is assumed. As with types, if a single value is specified with any of these keywords it will apply to each component
of the relevant vector, e.g., if scales=3.4 is specified for continuous design variables, Dakota will apply a characteristic
scaling value of 3.4 to each continuous design variable.

When scaling is enabled, the following procedures determine the transformations used to scale each component of a vari-
ables or response vector. A warning is issued if scaling would result in division by a value smaller in magnitude than
1.0el0+DBL_MIN. User-provided values violating this lower bound are accepted unaltered, whereas for automatically cal-
culated scaling, the lower bound is enforced.

* No xscales and no xscale_types specified for this component (variable or response type: no scaling performed
on this component.

¢ Characteristic value ( value’): the corresponding quantity is scaled (divided) by the required characteristic value
provided in the corresponding *scales specification, and bounds are adjusted as necessary. If the value is negative,
the sense of inequalities are changed accordingly.

e Automatic (" auto’): First, any characteristic values from the optional corresponding »scales specification are
applied. Then, automatic scaling will be attempted according to the following scheme:

— two-sided bounds scaled into the interval [0,1];

— one-sided bounds or targets are scaled by a characteristic value to move the bound or target to 1, and the sense of
inequalities are changed if necessary;

— no bounds or targets: no automatic scaling possible for this component

Automatic scaling is not available for objective functions nor least squares terms since they lack bound constraints.
Further, when automatically scaled, linear constraints are scaled by characteristic values only, not affinely scaled into
[0,1].

* Logarithmic (* 1og’): First, any characteristic values from the optional xscales specification are applied. Then,
log,, scaling is applied. Logarithmic scaling is not available for linear constraints. Further, when continuous design
variables are log scaled, linear constraints are not allowed.

Scaling for linear constraints specified through 1inear_inequality_scalesor linear_equality_scalesisap-
plied after any (user-specified or automatic) continuous variable scaling. For example, for scaling mapping unscaled continu-
ous design variables x to scaled variables Z:

5

J J
T — T
=270

i,
where a:gw is the final component multiplier and :c{) the offset, we have the following matrix system for linear inequality
constraints

ar < Ajx < ay
ar < A; (diag(zm)z + z0) < av
ar — Ajzo < Aidiag(xM)i <ay — Aizo
ar < AiF < av,
and user-specified or automatically computed scaling multipliers are applied to this final transformed system, which accounts

for any continuous design variable scaling. When automatic scaling is in use for linear constraints they are linearly scaled by
characteristic values only, not affinely scaled into the interval [0, 1].
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# Dakota Input File: rosen_opt_scaled.in

environment
tabular_data
tabular_data_file = ’'rosen_opt_scaled.dat’

method
conmin_frcg
scaling
output verbose

model
single
variables
continuous_design = 2
initial_point -1.2 1.0
lower_bounds -2.0 0.001
upper_bounds 2.0 2.0
descriptors rx1’ "x2"
scale_types = ’"value’ ’log’

scales = 4.0 0.1

interface
analysis_drivers = ’rosenbrock’
direct
responses
objective_functions = 1
primary_scale_types = ’'value’
primary_scales = 50.0

analytic_gradients
no_hessians

Figure 6.10: Sample usage of scaling keywords in Dakota input specification — see dakota/share/dakota/
examples/users/rosen_opt_scaled.in

6.3.2.1 Scaling Example

Figure 6.10 demonstrates the use of several scaling keywords for the textbook optimization problem. The continuous design
variable x1 is scaled by a characteristic value of 4.0, whereas x2 is scaled automatically into [0, 1] based on its bounds. The
objective function will be scaled by a factor of 50.0, then logarithmically, the first nonlinear constraint by a factor of 15.0, and
the second nonlinear constraint is not scaled.

6.4 Optimization Usage Guidelines

In selecting an optimization method, important considerations include the type of variables in the problem (continuous, dis-
crete, mixed), whether a global search is needed or a local search is sufficient, and the required constraint support (uncon-
strained, bound constrained, or generally constrained). Less obvious, but equally important, considerations include the effi-
ciency of convergence to an optimum (i.e., convergence rate) and the robustness of the method in the presence of challenging
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design space features (e.g., nonsmoothness).

Table 6.1 provides a convenient reference for choosing an optimization method or strategy to match the characteristics of the
user’s problem, where blank fields inherit the value from above. With respect to constraint support, it should be understood
that the methods with more advanced constraint support are also applicable to the lower constraint support levels; they are
listed only at their highest level of constraint support for brevity.

Gradient-based Methods

Gradient-based optimization methods are highly efficient, with the best convergence rates of all of the optimization methods. If
analytic gradient and Hessian information can be provided by an application code, a full Newton method will provide quadratic
convergence rates near the solution. More commonly, only gradient information is available and a quasi-Newton method is
chosen in which the Hessian information is approximated from an accumulation of gradient data. In this case, superlinear
convergence rates can be obtained. First-order methods, such as the Method of Feasible Directions, may achieve only a linear
rate of convergence, which may entail more iterations, but potentially at a lower cost per iteration associated with Hessian
calculations. These characteristics make gradient-based optimization the methods of choice when the problem is smooth,
unimodal, and well-behaved. However, when the problem exhibits nonsmooth, discontinuous, or multimodal behavior, these
methods can also be the least robust since inaccurate gradients will lead to bad search directions, failed line searches, and early
termination, and the presence of multiple minima will be missed.

Thus, for gradient-based optimization, a critical factor is the gradient accuracy. Analytic gradients are ideal, but are often
unavailable. For many engineering applications, a finite difference method will be used by the optimization algorithm to
estimate gradient values. Dakota allows the user to select the step size for these calculations, as well as choose between
forward-difference and central-difference algorithms. The finite difference step size should be selected as small as possible,
to allow for local accuracy and convergence, but not so small that the steps are “in the noise.” This requires an assessment of
the local smoothness of the response functions using, for example, a parameter study method. Central differencing, in general,
will produce more reliable gradients than forward differencing, but at roughly twice the expense.

ROL has traditionally been developed and applied to problems with analytic gradients (and Hessians). Nonetheless, ROL can
be used with Dakota-provided finite-differencing approximations to the gradient of both objective and constraints. However,
a user relying on such approximations is advised to resort to alternative optimizers such as DOT until performance of ROL
improves in future releases.

We offer the following recommendations in deciding upon a suitable gradient-based method for a given problem

* For unconstrained and bound-constrained problems, conjugate gradient-based methods exhibit the best scalability
for large-scale problems (1,000+ variables). These include the Polak-Ribiere conjugate gradient method (optpp-cg),
ROL’s trust-region method with truncated conjugate gradient subproblem solver (rol), and the Fletcher-Reeves con-
jugate gradient method (conmin_frcg and dot_frcg). These methods also provide good performance for small- to
intermediate-sized problems. Note that due to performance issues, users relying on finite-differencing approximations
to the gradient of the objective function are advised to resort to alternative optimizers such as DOT until performance
of ROL improves in future releases.

For constrained problems, with large number of constraints with respect to number of variables, Method of Feasible
Directions methods (conmin_mfd and dot _mmfd) and Sequential Quadratic Programming methods (nlpgl_sqgp
and npsol_sgp) exhibit good performance (relatively fast convergence rates). Note that we have observed weak
convergence rates while using npsol_sqp for certain problems with equality constraints. Quasi-Newton method
optpp-g-newton show moderate performance for constrained problems across all scales.

Non-gradient-based Methods

Nongradient-based methods exhibit much slower convergence rates for finding an optimum, and as a result, tend to be much
more computationally demanding than gradient-based methods. Nongradient local optimization methods, such as pattern
search algorithms, often require from several hundred to a thousand or more function evaluations, depending on the number
of variables, and nongradient global optimization methods such as genetic algorithms may require from thousands to tens-
of-thousands of function evaluations. Clearly, for nongradient optimization studies, the computational cost of the function
evaluation must be relatively small in order to obtain an optimal solution in a reasonable amount of time. In addition, nonlinear
constraint support in nongradient methods is an open area of research and, while supported by many nongradient methods in
Dakota, is not as refined as constraint support in gradient-based methods. However, nongradient methods can be more robust
and more inherently parallel than gradient-based approaches. They can be applied in situations were gradient calculations
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Method

Table 6.1: Guidelines for optimization method selection.

Classification
Gradient-Based Local

Desired Problem
Characteristics

Applicable Methods

smooth; continuous variables; no constraints

optpp-cg, rol

smooth; continuous variables;
bound constraints

dot_bfgs, dot_frcg
conmin_frcg, rol

Gradient-Based Global

smooth; continuous variables;
bound constraints,
linear and nonlinear constraints

npsol_sqp, nlpql_sqp, dot_-mmfd,
dot_slp, dot_sqp, conmin_mfd,
optpp-newton, optpp-q-newton,
optpp-_fd_newton, rol
weighted sums (multiobjective),
pareto_set strategy (multiobjective)

Derivative-Free Local

smooth; continuous variables;
bound constraints,
linear and nonlinear constraints

hybrid_strategy,
multi_start strategy

nonsmooth; continuous variables; bound constraints

optpp-pds

nonsmooth; continuous variables;
bound constraints,
nonlinear constraints

coliny_cobyla,
coliny_pattern_search,
coliny _solis_wets,

nonsmooth; continuous variables;
bound constraints,
linear and nonlinear constraints

asynch_pattern_search,
surrogate_based_local

Derivative-Free Global

nonsmooth; continuous variables;
discrete variables; bound constraints,
nonlinear constraints

mesh_adaptive_search

nonsmooth; continuous variables; bound constraints

ncsu_direct

nonsmooth; continuous variables;
bound constraints,
nonlinear constraints

coliny _direct,
efficient_global

nonsmooth; continuous variables;
bound constraints,
linear and nonlinear constraints

surrogate_based_global

nonsmooth; continuous variables,

discrete variables; bound constraints,

linear and nonlinear constraints

coliny_ea
discrete variables; bound constraints,
nonlinear constraints
nonsmooth; continuous variables, soga,

moga (multiobjective)
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are too expensive or unreliable. In addition, some nongradient-based methods can be used for global optimization which
gradient-based techniques, by themselves, cannot. For these reasons, nongradient-based methods deserve consideration when
the problem may be nonsmooth, multimodal, or poorly behaved.

Surrogate-based Methods

Approaches that seek to improve the effectiveness or efficiency of optimizers and least squares methods through the use of
surrogate models include the surrogate-based local, surrogate-based global, and efficient global methods. Section 14.6 pro-
vides further information on these approaches. The surrogate-based local approach (see Section 14.6.1) brings the efficiency
of gradient-based optimization/least squares methods to nonsmooth or poorly behaved problems by smoothing noisy or dis-
continuous response results with a data fit surrogate model (e.g., a quadratic polynomial) and then minimizing on the smooth
surrogate using efficient gradient-based techniques. The surrogate-based global approach (see Section 14.6.2) similarly em-
ploys optimizers/least squares methods with surrogate models, but rather than localizing through the use of trust regions, seeks
global solutions using global methods. And the efficient global approach (see Section 6.2.3) uses the specific combination
of Gaussian process surrogate models in combination with the DIRECT global optimizer. Similar to these surrogate-based
approaches, the hybrid and multistart optimization component-based algorithms seek to bring the efficiency of gradient-based
optimization methods to global optimization problems. In the former case, a global optimization method can be used for a
few cycles to locate promising regions and then local gradient-based optimization is used to efficiently converge on one or
more optima. In the latter case, a stratification technique is used to disperse a series of local gradient-based optimization
runs through parameter space. Without surrogate data smoothing, however, these strategies are best for smooth multimodal
problems. Section 14.2 and Section 14.3 provide more information on these approaches.

6.5 Optimization Third Party Libraries

As mentioned in 6, Dakota serves as a delivery vehicle for a number third-party optimization libraries. The packages are listed
here along with the license status and web page where available.

¢ CONMIN (conmin_methods) License: Public Domain (NASA).

* DOT (dot_ methods) License: commercial; website: Vanderplaats Research and Development, http://www.
vrand.com. Not included in the open source version of Dakota. Sandia National Laboratories and Los Alamos
National Laboratory have limited seats for DOT. Other users may obtain their own copy of DOT and compile it with
the Dakota source code.

* HOPSPACK (asynch_pattern_search) License: LGPL; web page: https://software.sandia.gov/
trac/hopspack.

¢ JEGA (soga, moga) License: LGPL

* NCSUOpt (ncsu-direct) License: MIT

¢ NLPQL (n1pgl-methods) License: commercial; website: Prof. Klaus Schittkowski, http://www.uni-bayreuth.
de/departments/math/~kschittkowski/nlpglp20.htm). Not included in the open source version of
Dakota. Users may obtain their own copy of NLPQLP and compile it with the Dakota source code.

¢ NPSOL (npsol_methods) License: commercial; website: Stanford Business Software ht tp://www.sbsi-sol-optimize.
com. Not included in the open source version of Dakota. Sandia National Laboratories, Lawrence Livermore National
Laboratory, and Los Alamos National Laboratory all have site licenses for NPSOL. Other users may obtain their own
copy of NPSOL and compile it with the Dakota source code.

* NOMAD (mesh_adaptive_search) License: LGPL; website: http://www.gerad.ca/NOMAD/Project/
Home.html.

¢ OPT++ (optpp- methods) License: LGPL; website: http://csmr.ca.sandia.gov/opt++.
* ROL (rol) License: BSD; website: https://trilinos.org/packages/rol.

¢ SCOLIB (coliny_methods) License: BSD; website: https://software.sandia.gov/trac/acro/wiki/
Packages.
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Chapter 7

Nonlinear Least Squares Capabilities

7.1 Overview

Any Dakota optimization algorithm can be applied to calibration problems arising in parameter estimation, system identifica-
tion, and test/analysis reconciliation. However, nonlinear least-squares methods are optimization algorithms that exploit the
special structure of a sum of the squares objective function [58].

To exploit the problem structure, more granularity is needed in the response data than is required for a typical optimization
problem. That is, rather than using the sum-of-squares objective function and its gradient, least-squares iterators require each
term used in the sum-of-squares formulation along with its gradient. This means that the m functions in the Dakota response
data set consist of the individual least-squares terms along with any nonlinear inequality and equality constraints. These
individual terms are often called residuals when they denote differences of observed quantities from values computed by the
model whose parameters are being estimated.

The enhanced granularity needed for nonlinear least-squares algorithms allows for simplified computation of an approximate
Hessian matrix. In Gauss-Newton-based methods for example, the true Hessian matrix is approximated by neglecting terms in
which residuals multiply Hessians (matrices of second partial derivatives) of residuals, under the assumption that the residuals
tend towards zero at the solution. As a result, residual function value and gradient information (first-order information)
is sufficient to define the value, gradient, and approximate Hessian of the sum-of-squares objective function (second-order
information). See Section 7.2 for additional details on this approximation.

In practice, least-squares solvers will tend to be significantly more efficient than general-purpose optimization algorithms
when the Hessian approximation is a good one, e.g., when the residuals tend towards zero at the solution. Specifically,
they can exhibit the quadratic convergence rates of full Newton methods, even though only first-order information is used.
Gauss-Newton-based least-squares solvers may experience difficulty when the residuals at the solution are significant. Dakota
has three solvers customized to take advantage of the sum of squared residuals structure in this problem formulation. Least
squares solvers may experience difficulty when the residuals at the solution are significant, although experience has shown that
Dakota’s NL2SOL method can handle some problems that are highly nonlinear and have nonzero residuals at the solution.

7.2 Nonlinear Least Squares Fomulations

Specialized least squares solution algorithms can exploit the structure of a sum of the squares objective function for problems
of the form:
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minimize: fx)= Z[Tz (x)])°

xeR”
subject to: gr <gx) <gu
h(x) = h, 7.1)
ar <Aix<ay
Acx=a;

XL <x <Xy

where f(x) is the objective function to be minimized and 7T} (x) is the i'" least squares term. The bound, linear, and nonlinear
constraints are the same as described previously for (6.1). Specialized least squares algorithms are generally based on the
Gauss-Newton approximation. When differentiating f(x) twice, terms of T;(x)T}(x) and [T} (x)]? result. By assuming
that the former term tends toward zero near the solution since T;(x) tends toward zero, then the Hessian matrix of second
derivatives of f(x) can be approximated using only first derivatives of T;(x). As a result, Gauss-Newton algorithms exhibit
quadratic convergence rates near the solution for those cases when the Hessian approximation is accurate, i.e. the residuals
tend towards zero at the solution. Thus, by exploiting the structure of the problem, the second order convergence characteristics
of a full Newton algorithm can be obtained using only first order information from the least squares terms.

A common example for T; (x) might be the difference between experimental data and model predictions for a response quantity
at a particular location and/or time step, i.e.:

Ti (X) = RZ(X) — Ri (72)

where R;(x) is the response quantity predicted by the model and R; is the corresponding experimental data. In this case,
x would have the meaning of model parameters which are not precisely known and are being calibrated to match available
data. This class of problem is known by the terms parameter estimation, system identification, model calibration, test/analysis
reconciliation, etc.

7.3 Nonlinear Least Squares with Dakota

In order to specify a least-squares problem, the responses section of the Dakota input should be configured using calibration_terms
(as opposed to objective_functions as for optimization). The calibration terms refer to the residuals (differences be-
tween the simulation model and the data). Note that Dakota expects the residuals, not the squared residuals, and offers options
for instead returning the simulation output to Dakota together with a separate calibration_data file, from which residuals
will be calculated. Any linear or nonlinear constraints are handled in an identical way to that of optimization (see Section 6.1;
note that neither Gauss-Newton nor NLSSOL require any constraint augmentation and NL2SOL supports neither linear nor
nonlinear constraints). Gradients of the least-squares terms and nonlinear constraints are required and should be specified
using either numerical_gradients, analytic_.gradients, or mixed_gradients. Since explicit second deriva-
tives are not used by the least-squares methods, the no_hessians specification should be used. Dakota’s scaling options,
described in Section 6.3.2 can be used on least-squares problems, using the calibration_term_scales keyword to scale
least-squares residuals, if desired.

7.4 Solution Techniques

Nonlinear least-squares problems can be solved using the Gauss-Newton algorithm, which leverages the full Newton method
from OPT++, the NLSSOL algorithm, which is closely related to NPSOL, or the NL2SOL algorithm, which uses a secant-
based algorithm. Details for each are provided below.
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7.4.1 Gauss-Newton

Dakota’s Gauss-Newton algorithm consists of combining an implementation of the Gauss-Newton Hessian approximation
(see Section 7.2) with full Newton optimization algorithms from the OPT++ package [105] (see Section 6.2.1.3). The exact
objective function value, exact objective function gradient, and the approximate objective function Hessian are defined from
the least squares term values and gradients and are passed to the full-Newton optimizer from the OPT++ software package. As
for all of the Newton-based optimization algorithms in OPT++, unconstrained, bound-constrained, and generally-constrained
problems are supported. However, for the generally-constrained case, a derivative order mismatch exists in that the nonlinear
interior point full Newton algorithm will require second-order information for the nonlinear constraints whereas the Gauss-
Newton approximation only requires first order information for the least squares terms. License: LGPL.

This approach can be selected using the opt pp-g_newt on method specification. An example specification follows:

method,
optpp_g_newton
max_iterations = 50
convergence_tolerance = le-4

output debug

Refer to the Dakota Reference Manual [3] for more detail on the input commands for the Gauss-Newton algorithm.

The Gauss-Newton algorithm is gradient-based and is best suited for efficient navigation to a local least-squares solution in
the vicinity of the initial point. Global optima in multimodal design spaces may be missed. Gauss-Newton supports bound,
linear, and nonlinear constraints. For the nonlinearly-constrained case, constraint Hessians (required for full-Newton nonlinear
interior point optimization algorithms) are approximated using quasi-Newton secant updates. Thus, both the objective and
constraint Hessians are approximated using first-order information.

7.4.2 NLSSOL

The NLSSOL algorithm is bundled with NPSOL. It uses an SQP-based approach to solve generally-constrained nonlinear
least-squares problems. It periodically employs the Gauss-Newton Hessian approximation to accelerate the search. Like the
Gauss-Newton algorithm of Section 7.4.1, its derivative order is balanced in that it requires only first-order information for the
least-squares terms and nonlinear constraints. License: commercial; see NPSOL 6.2.1.3.

This approach can be selected using the n1ssol_sgp method specification. An example specification follows:

method,
nlssol_sgp
convergence_tolerance = le-8

Refer to the Dakota Reference Manual [3] for more detail on the input commands for NLSSOL.

7.4.3 NL2SOL

The NL2SOL algorithm [25] is a secant-based least-squares algorithm that is g-superlinearly convergent. It adaptively chooses
between the Gauss-Newton Hessian approximation and this approximation augmented by a correction term from a secant
update. NL2SOL tends to be more robust (than conventional Gauss-Newton approaches) for nonlinear functions and “large
residual” problems, i.e., least-squares problems for which the residuals do not tend towards zero at the solution. License:
publicly available.
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7.4.4 Additional Features

Dakota can calculate confidence intervals on estimated parameters. These are computed on a per-parameter basis; they are
not joint confidence intervals. The intervals reported are 95% intervals around the estimated parameters, and are calculated as
the optimal value of the estimated parameters +/— a t-test statistic times the standard error (SE) of the estimated parameter
vector. The SE is based on a linearization approximation involving the matrix of the derivatives of the model with respect to
the derivatives of the estimated parameters. In the case where these gradients are extremely inaccurate or the model is very
nonlinear, the confidence intervals reported are likely to be inaccurate as well. (Confidence intervals cannot be calculated
when the number of least-squares terms is less than the number of parameters to be estimated, or when using vendor numerical
gradients.) See [123] and [147] for more details about confidence intervals, and note that there are alternative approaches such
as Bonferroni confidence intervals and joint confidence intervals based on linear approximations or F-tests.

Least squares calibration terms (responses) can be weighted. When observation error variance is provided alongside calibration
data, its inverse is applied to yield the typical variance-weighted least squares formulation. Alternately, the calibration_terms
weights specification can be used to weight the squared residuals. (Neither set of weights are adjusted during calibration

as they would be in iteratively re-weighted least squares.) When response scaling is active, it is applied after error variance
weighting and before weights application. The calibration_terms keyword documentation in the Dakota Reference
Manual [3] has more detail about weighting and scaling of the residual terms.

7.5 Examples

Both the Rosenbrock and textbook example problems can be formulated as nonlinear least-squares problems. Refer to Chap-
ter 20 for more information on these formulations.

Figure 7.1 shows an excerpt from the output obtained when running NL2SOL on a five-dimensional problem. Note that the
optimal parameter estimates are printed, followed by the residual norm and values of the individual residual terms, followed
by the confidence intervals on the parameters.

The analysis driver script (the script being driven by Dakota) has to perform several tasks in the case of parameter estimation
using nonlinear least-squares methods. The analysis driver script must: (1) read in the values of the parameters supplied by
Dakota; (2) run the computer simulation with these parameter values; (3) retrieve the results from the computer simulation;
(4) compute the difference between each computed simulation value and the corresponding experimental or measured value;
and (5) write these residuals (differences) to an external file that gets passed back to Dakota. Note there will be one line per
residual term, specified with calibration_terms in the Dakota input file. It is the last two steps which are different from
most other Dakota applications.

To simplify specifying a least squares problem, one may provide Dakota a data file containing experimental results or other
calibration data. In the case of scalar calibration terms, this file may be specified with calibration_data_file. In
this case, Dakota will calculate the residuals (that is, the simulation model results minus the experimental results), and the
user-provided script can omit this step: the script can just return the simulation outputs of interest. An example of this can
be found in the file named dakota/share/dakota/examples/users/textbook_nls_datafile.in. In this
example, there are 3 residual terms. The data file of experimental results associated with this example is textbook_nls_
datafile.lsqg.dat. These three values are subtracted from the least-squares terms to produce residuals for the nonlinear
least-squares problem. Note that the file may be annotated (specified by annotated) or freeform (specified by freeform).
The number of experiments in the calibration data file may be specified with num_experiments, with one row of data per
experiment. When multiple experiments are present, the total number of least squares terms will be the number of calibration
terms times the number of experiments.

Finally, the calibration data file may contain additional information than just the observed experimental responses. If the
observed data has measurement error associated with it, this can be specified in columns of such error data after the response
data. The type of measurement error is specified by variance_type. For scalar calibration terms, the variance_type
can be either none (the user does not specify a measurement variance associated with each calibration term) or scalar (the
user specifies one measurement variance per calibration term). For field calibration terms, the variance_type can also
be diagonal or matrix. These are explained in more detail in the Reference manual. Additionally, there is sometimes
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<<<<< Iterator nl2sol completed.
<<<<< Function evaluation summary: 27 total (26 new, 1 duplicate)
<<<<< Best parameters =
3.7541004764e-01 x1
1.9358463401e+00 x2
-1.4646865611e+00 x3
1.2867533504e-02 x4
2.2122702030e-02 x5
<<<<< Best residual norm = 7.3924926090e-03; 0.5 * norm™2 = 2.7324473487e-05
<<<<< Best residual terms =
-2.5698266189e-03
4.4759880011e-03
9.9223430643e-04
-1.0634409194e-03

3.7116510206e-01, 3.7965499323e-01
1.4845485507e+00, .3871441295e+00
.9189348458e+00, -1.0104382765e+00
1.1948590669e-02, .3786476338e-02
2.0289951664e-02, 2.3955452397e-02

Confidence Interval for x1 is
Confidence Interval for x2 is
Confidence Interval for x3 is
Confidence Interval for x4 is
Confidence Interval for x5 is

N

|
=
-

Figure 7.1: Example of confidence intervals on optimal parameters

the need to specify configuration variables. These are often used in Bayesian calibration analysis. These are specified as
num_config_variables. If the user specifies a positive number of configuration variables, it is expected that they will
occur in the text file before the responses.

7.6 Usage Guidelines

Calibration problems can be transformed to general optimization problems where the objective is some type of aggregated
error metric. For example, the objective could be the sum of squared error terms. However, it also could be the mean of the
absolute value of the error terms, the maximum difference between the simulation results and observational results, etc. In
all of these cases, one can pose the calibration problem as an optimization problem that can be solved by any of Dakota’s
optimizers. In this situation, when applying an general optimization solver to a calibration problem, the guidelines in Table 6.4
still apply.

In some cases, it will be better to use a nonlinear least-squares method instead of a general optimizer to determine optimal
parameter values which result in simulation responses that “best fit” the observational data. Nonlinear least squares methods
exploit the special structure of a sum of the squares objective function. They can be much more efficient than general optimiz-
ers. However, these methods require the gradients of the function with respect to the parameters being calibrated. If the model
is not able to produce gradients, one can use finite differencing to obtain gradients. However, the gradients must be reasonably
accurate for the method to proceed. Note that the nonlinear least-squares methods only operate on a sum of squared errors as
the objective. Also, the user must return each residual term separately to Dakota, whereas the user can return an aggregated
error measure in the case of general optimizers.

The three nonlinear least-squares methods are the Gauss-Newton method in OPT++, NLSSOL, and NL2SOL. Any of these
may be tried; they give similar performance on many problems. NL2SOL tends to be more robust than Gauss-Newton,
especially for nonlinear functions and large-residual problems where one is not able to drive the residuals to zero at the
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solution. NLSSOL does require that the user has the NPSOL library. Note that all of these methods are local in the sense that
they are gradient-based and depend on an initial starting point. Often they are used in conjunction with a multi-start method,
to perform several repetitions of the optimization at different starting points in the parameter space. Another approach is to
use a general global optimizer such as a genetic algorithm or DIRECT as mentioned above. This can be much more expensive,
however, in terms of the number of function evaluations required.
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Models

8.1 Overview

Chapters 3 through 7 presented the different “iterators” (or methods) available in Dakota. An iterator iterates on a model in
order to map a set of variables into a set of responses. This model may involve a simple mapping involving a single interface, or
it may involve recursions using sub-iterators and sub-models. These recursion capabilities were developed in order to provide
mechanisms for “nesting,” “layering,” and “recasting” of software components, which allows the use of these components
as building blocks to accomplish more sophisticated studies, such as surrogate-based optimization or optimization under
uncertainty. In a nested relationship, a sub-iterator is executed using its sub-model for every evaluation of the nested model.
In a layered relationship, on the other hand, sub-iterators and sub-models are used only for periodic updates and verifications.
And in a recast relationship, the input variable and output response definitions in a sub-model are reformulated in order to
support new problem definitions. In each of these cases, the sub-model is of arbitrary type, such that model recursions can
be chained together in as long of a sequence as needed (e.g., layered containing nested contained layered containing single in
Section 15.2.2). Figure 8.1 displays the model class hierarchy from the Dakota Developers Manual [2], with derived classes
for single models, nested models, recast models, and two types of surrogate models: data fit and hierarchical/multifidelity. A
third type of derived surrogate model supporting reduced-order models (ROM) is planned for future releases.

Section 8.2 describes single models, Section 8.3 describes recast models, Section 8.4 describes surrogate models of various
types, Section 8.5 describes nested models, Section 8.6 describes random field models, and Section 8.7 describes active
subspace models. Finally, Chapter 15 presents a number of advanced examples demonstrating these model recursions.

Mestedrkdodel RecastModel Singletodel Surrogaterodel

DataFitsurrhodel Hierarchsurikiodel

Figure 8.1: The Dakota model class hierarchy.
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8.2 Single Models

The single model is the simplest model type. It uses a single interface instance (see Chapter 10) to map variables (see
Chapter 9) into responses (see Chapter 11). There is no recursion in this case. Refer to the Models chapter in the Dakota
Reference Manual [3] for additional information on the single model specification.

8.3 Recast Models

The recast model is not directly visible to the user within the input specification. Rather, it is used “behind the scenes” to recast
the inputs and outputs of a sub-model for the purposes of reformulating the problem posed to an iterator. Examples include
variable and response scaling (see Section 6.3.2), transformations of uncertain variables and associated response derivatives
to employ standardized random variables (see Sections 5.3 and 5.4), multiobjective optimization (see Section 6.3.1), merit
functions (see Section 14.6.1), and expected improvement/feasibility (see Sections 6.2.3 and 5.3.2). Refer to the Dakota
Developers Manual [2] for additional details on the mechanics of recasting problem formulations.

8.4 Surrogate Models

Surrogate models are inexpensive approximate models that are intended to capture the salient features of an expensive high-
fidelity model. They can be used to explore the variations in response quantities over regions of the parameter space, or they
can serve as inexpensive stand-ins for optimization or uncertainty quantification studies (see, for example, the surrogate-based
optimization methods in Section 14.6). Surrogate models supported in Dakota can be categorized into three types: data fits,
multifidelity, and reduced-order model surrogates. An overview and discussion of surrogate correction is provided here, with
details following.

8.4.1 Overview of Surrogate Types

Data fitting methods involve construction of an approximation or surrogate model using data (response values, gradients, and
Hessians) generated from the original truth model. Data fit methods can be further categorized as local, multipoint, and global
approximation techniques, based on the number of points used in generating the data fit. Local methods involve response data
from a single point in parameter space. Available local techniques currently include:

Known Issue: When using discrete variables, there have been sometimes significant differences in data fit surrogate behavior
observed across computing platforms in some cases. The cause has not yet been fully diagnosed and is currently under investi-
gation. In addition, guidance on appropriate construction and use of surrogates with discrete variables is under development.
In the meantime, users should therefore be aware that there is a risk of inaccurate results when using surrogates with discrete
variables.

Taylor Series Expansion: This is a local first-order or second-order expansion centered at a single point in the parameter
space.

Multipoint approximations involve response data from two or more points in parameter space, often involving the current and
previous iterates of a minimization algorithm. Available techniques currently include:

TANA-3: This multipoint approximation uses a two-point exponential approximation [ 158, 46] built with response value and
gradient information from the current and previous iterates.

Global methods, often referred to as response surface methods, involve many points spread over the parameter ranges of
interest. These surface fitting methods work in conjunction with the sampling methods and design of experiments methods
described in Sections 5.2 and 4.2.

Polynomial Regression: First-order (linear), second-order (quadratic), and third-order (cubic) polynomial response surfaces
computed using linear least squares regression methods. Note: there is currently no use of forward- or backward-stepping
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regression methods to eliminate unnecessary terms from the polynomial model.

An experimental least squares regression polynomial model was added in Dakota 6.12. The user may specify the basis
functions in the polynomial through a total degree scheme.

Gaussian Process (GP) or Kriging Interpolation Dakota contains two supported implementations of Gaussian process, also
known as Kriging [64], spatial interpolation. One of these resides in the Surfpack sub-package of Dakota, the other resides in
Dakota itself. Both versions use the Gaussian correlation function with parameters that are selected by Maximum Likelihood
Estimation (MLE). This correlation function results in a response surface that is C'°°-continuous. Prior to Dakota 5.2, the
Surfpack GP was referred to as the “Kriging” model and the Dakota version was labeled as the “Gaussian Process.” These
terms are now used interchangeably. As of Dakota 5.2,the Surfpack GP is used by default. For now the user still has the
option to select the Dakota GP, but the Dakota GP is deprecated and will be removed in a future release. A third experimental
Gaussian process model was added in Dakota 6.12.

¢ Surfpack GP: Ill-conditioning due to a poorly spaced sample design is handled by discarding points that contribute the
least unique information to the correlation matrix. Therefore, the points that are discarded are the ones that are easiest
to predict. The resulting surface will exactly interpolate the data values at the retained points but is not guaranteed to
interpolate the discarded points.

¢ Dakota GP: Ill-conditioning is handled by adding a jitter term or “nugget” to diagonal elements of the correlation
matrix. When this happens, the Dakota GP may not exactly interpolate the data values.

* Experimental GP: This GP also contains a nugget parameter that may be fixed by the user or determined through
MLE. When the nugget is greater than zero the mean of the GP is not forced to interpolate the response values.

Artificial Neural Networks: An implementation of the stochastic layered perceptron neural network developed by Prof. D.
C. Zimmerman of the University of Houston [159]. This neural network method is intended to have a lower training (fitting)
cost than typical back-propagation neural networks.

Multivariate Adaptive Regression Splines (MARS): Software developed by Prof. J. H. Friedman of Stanford Univer-
sity [51]. The MARS method creates a C’*>-continuous patchwork of splines in the parameter space.

Radial Basis Functions (RBF): Radial basis functions are functions whose value typically depends on the distance from a
center point, called the centroid. The surrogate model approximation is constructed as the weighted sum of individual radial
basis functions.

Moving Least Squares (MLS): Moving Least Squares can be considered a more specialized version of linear regression
models. MLS is a weighted least squares approach where the weighting is “moved” or recalculated for every new point where
a prediction is desired. [109]

Piecewise Decomposition Option for Global Surrogates: Typically, the previous regression techniques use all available
sample points to approximate the underlying function anywhere in the domain. An alternative option is to use piecewise
decomposition to locally approximate the function at some point using a few sample points from its neighborhood. This
option currently supports Polynomial Regression, Gaussian Process (GP) Interpolation, and Radial Basis Functions (RBF)
Regression. It requires a decomposition cell type (currently set to be Voronoi cells), an optional number of support layers of
neighbors, and optional discontinuity detection parameters (jump/gradient).

In addition to data fit surrogates, Dakota supports multifidelity and reduced-order model approximations:

Multifidelity Surrogates: Multifidelity modeling involves the use of a low-fidelity physics-based model as a surrogate for the
original high-fidelity model. The low-fidelity model typically involves a coarser mesh, looser convergence tolerances, reduced
element order, or omitted physics. It is a separate model in its own right and does not require data from the high-fidelity model
for construction. Rather, the primary need for high-fidelity evaluations is for defining correction functions that are applied to
the low-fidelity results.

Reduced Order Models: A reduced-order model (ROM) is mathematically derived from a high-fidelity model using the
technique of Galerkin projection. By computing a set of basis functions (e.g., eigenmodes, left singular vectors) that capture
the principal dynamics of a system, the original high-order system can be projected to a much smaller system, of the size of
the number of retained basis functions.
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8.4.2 Correction Approaches

Each of the surrogate model types supports the use of correction factors that improve the local accuracy of the surrogate models.
The correction factors force the surrogate models to match the true function values and possibly true function derivatives at
the center point of each trust region. Currently, Dakota supports either zeroth-, first-, or second-order accurate correction
methods, each of which can be applied using either an additive, multiplicative, or combined correction function. For each of
these correction approaches, the correction is applied to the surrogate model and the corrected model is then interfaced with
whatever algorithm is being employed. The default behavior is that no correction factor is applied.

The simplest correction approaches are those that enforce consistency in function values between the surrogate and original
models at a single point in parameter space through use of a simple scalar offset or scaling applied to the surrogate model.
First-order corrections such as the first-order multiplicative correction (also known as beta correction [15]) and the first-order
additive correction [99] also enforce consistency in the gradients and provide a much more substantial correction capability
that is sufficient for ensuring provable convergence in SBO algorithms (see Section 14.6.1). SBO convergence rates can be
further accelerated through the use of second-order corrections which also enforce consistency in the Hessians [37], where the
second-order information may involve analytic, finite-difference, or quasi-Newton Hessians.

Correcting surrogate models with additive corrections involves
Frio (%) = fio(x) + a(x) 3.1

where multifidelity notation has been adopted for clarity. For multiplicative approaches, corrections take the form

Fris (%) = fio(x)B(x) (8.2)

where, for local corrections, a(x) and 3(x) are first or second-order Taylor series approximations to the exact correction
functions:

alx) = A(xe) 4+ VAxe)" (x — xc) + %(x —x¢) T VZA(xe) (% — %) (8.3)

B(x) = B(xc)+ VB(XC)T(X —Xe) + %(x — xc)TVQB(xc)(x — Xe) 8.4)

Ax) = fri(x) = fio(x) (8.5)
fni(x)
B = P 5.6)

Refer to [37] for additional details on the derivations.

A combination of additive and multiplicative corrections can provide for additional flexibility in minimizing the impact of
the correction away from the trust region center. In other words, both additive and multiplicative corrections can satisfy local
consistency, but through the combination, global accuracy can be addressed as well. This involves a convex combination of
the additive and multiplicative corrections:

Friy (%) = Yfnio (%) + (1 =) faiy (x) 8.7

where  is calculated to satisfy an additional matching condition, such as matching values at the previous design iterate.

8.4.3 Data Fit Surrogate Models

A surrogate of the data fit type is a non-physics-based approximation typically involving interpolation or regression of a set
of data generated from the original model. Data fit surrogates can be further characterized by the number of data points used
in the fit, where a local approximation (e.g., first or second-order Taylor series) uses data from a single point, a multipoint ap-
proximation (e.g., two-point exponential approximations (TPEA) or two-point adaptive nonlinearity approximations (TANA))
uses a small number of data points often drawn from the previous iterates of a particular algorithm, and a global approximation
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(e.g., polynomial response surfaces, kriging/gaussian_process, neural networks, radial basis functions, splines) uses a set of
data points distributed over the domain of interest, often generated using a design of computer experiments.

Dakota contains several types of surface fitting methods that can be used with optimization and uncertainty quantification
methods and strategies such as surrogate-based optimization and optimization under uncertainty. These are: polynomial mod-
els (linear, quadratic, and cubic), first-order Taylor series expansion, kriging spatial interpolation, artificial neural networks,
multivariate adaptive regression splines, radial basis functions, and moving least squares. With the exception of Taylor series
methods, all of the above methods listed in the previous sentence are accessed in Dakota through the Surfpack library. All of
these surface fitting methods can be applied to problems having an arbitrary number of design parameters. However, surface
fitting methods usually are practical only for problems where there are a small number of parameters (e.g., a maximum of
somewhere in the range of 30-50 design parameters). The mathematical models created by surface fitting methods have a
variety of names in the engineering community. These include surrogate models, meta-models, approximation models, and
response surfaces. For this manual, the terms surface fit model and surrogate model are used.

The data fitting methods in Dakota include software developed by Sandia researchers and by various researchers in the aca-
demic community.

8.4.3.1 Procedures for Surface Fitting

The surface fitting process consists of three steps: (1) selection of a set of design points, (2) evaluation of the true response
quantities (e.g., from a user-supplied simulation code) at these design points, and (3) using the response data to solve for
the unknown coefficients (e.g., polynomial coefficients, neural network weights, kriging correlation factors) in the surface fit
model. In cases where there is more than one response quantity (e.g., an objective function plus one or more constraints), then a
separate surface is built for each response quantity. Currently, most surface fit models are built using only 0""-order information
(function values only), although extensions to using higher-order information (gradients and Hessians) are possible, and the
Kriging model does allow construction for gradient data. Each surface fitting method employs a different numerical method
for computing its internal coefficients. For example, the polynomial surface uses a least-squares approach that employs a
singular value decomposition to compute the polynomial coefficients, whereas the kriging surface uses Maximum Likelihood
Estimation to compute its correlation coefficients. More information on the numerical methods used in the surface fitting codes
is provided in the Dakota Developers Manual [2].

The set of design points that is used to construct a surface fit model is generated using either the DDACE software pack-
age [141] or the LHS software package [83]. These packages provide a variety of sampling methods including Monte Carlo
(random) sampling, Latin hypercube sampling, orthogonal array sampling, central composite design sampling, and Box-
Behnken sampling. More information on these software packages is provided in Chapter 4. Optionally, the quality of a
surrogate model can be assessed with surrogate metrics or diagnostics as described in Section 8.4.3.11.

8.4.3.2 Taylor Series

The Taylor series model is purely a local approximation method. That is, it provides local trends in the vicinity of a single
point in parameter space. The first-order Taylor series expansion is:

f(x) = f(x0) + Vxf(x0)" (x — x0) (8.8)
and the second-order expansion is:

f(x) & f(x0) + Vs f(x0) " (x — x0) + %(x —x0)" Vi f(x0)(x — x0) (8.9)

where x is the expansion point in n-dimensional parameter space and f(xo), Vxf(xo), and V2 f(xo) are the computed
response value, gradient, and Hessian at the expansion point, respectively. As dictated by the responses specification used in
building the local surrogate, the gradient may be analytic or numerical and the Hessian may be analytic, numerical, or based
on quasi-Newton secant updates.

In general, the Taylor series model is accurate only in the region of parameter space that is close to xo . While the accuracy
is limited, the first-order Taylor series model reproduces the correct value and gradient at the point xo, and the second-order
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Taylor series model reproduces the correct value, gradient, and Hessian. This consistency is useful in provably-convergent
surrogate-based optimization. The other surface fitting methods do not use gradient information directly in their models, and
these methods rely on an external correction procedure in order to satisfy the consistency requirements of provably-convergent
SBO.

8.4.3.3 Two Point Adaptive Nonlinearity Approximation

The TANA-3 method [158] is a multipoint approximation method based on the two point exponential approximation [46].
This approach involves a Taylor series approximation in intermediate variables where the powers used for the intermediate
variables are selected to match information at the current and previous expansion points. The form of the TANA model is:

n 1—p;
fx) ~ fx2)+ ) gg‘ (xz)%(mfi - fe(x Z(wm —abh)? (8.10)
i—1 (3 (3

where n is the number of variables and:

- (Xl) T
i = 14ln |2 " /1 {L] -
! ' gg{( 2)} " Ti2 &.11)
H
w0 = @ =2l )2 T (2 — a2 (8.12)
~ of
Ho= 2\ J0a) = fxa) = 3 o (xa) = = (o —aly) ®8.13)
i=1 4

and x2 and x; are the current and previous expansion points. Prior to the availability of two expansion points, a first-order
Taylor series is used.

8.4.3.4 Linear, Quadratic, and Cubic Polynomial Models

Linear, quadratic, and cubic polynomial models are available in Dakota. The form of the linear polynomial model is

f)~eo+ ) cm (8.14)
=1

the form of the quadratic polynomial model is:
~ co + Z cix; + Z Z CijTi T (8.15)
i=1 5>
and the form of the cubic polynomial model is:
~c0+chzl+Zchxzxj +ZZchkz T;Th (8.16)
i=1 j>i i=1 j>i k>j

In all of the polynomial models, f (x) is the response of the polynomial model; the x;, x;, ) terms are the components of
the n-dimensional design parameter values; the ¢ , ¢; , ¢;; , ¢ijx terms are the polynomial coefficients, and n is the number
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of design parameters. The number of coefficients, n., depends on the order of polynomial model and the number of design
parameters. For the linear polynomial:

=n+1 (8.17)

nelinear
for the quadratic polynomial:
(n+1)(n+2)

Mequad = =5 (8.18)

and for the cubic polynomial:

3 2
_ (n® 4+ 6n° + 11n + 6) (8.19)

Ne .
cubic 6

There must be at least n. data samples in order to form a fully determined linear system and solve for the polynomial coeffi-
cients. For discrete design variables, a further requirement for a well-posed problem is for the number of distinct values that
each discrete variable can take must be greater than the order of polynomial model (by at least one level). For the special case
involving anisotropy in which the degree can be specified differently per dimension, the number of values for each discrete
variable needs to be greater than the corresponding order along the respective dimension. In Dakota, a least-squares approach
involving a singular value decomposition numerical method is applied to solve the linear system.

The utility of the polynomial models stems from two sources: (1) over a small portion of the parameter space, a low-order
polynomial model is often an accurate approximation to the true data trends, and (2) the least-squares procedure provides a
surface fit that smooths out noise in the data. For this reason, the surrogate-based optimization approach often is successful
when using polynomial models, particularly quadratic models. However, a polynomial surface fit may not be the best choice
for modeling data trends over the entire parameter space, unless it is known a priori that the true data trends are close to linear,
quadratic, or cubic. See [107] for more information on polynomial models.

This surrogate model supports the domain decomposition option, further explained in 8.4.3.10.

An experimental polynomial model was added in Dakota 6.12 that uses the keyword experimental__
polynomial. The user specifies the order of the polynomial through the required keyword basis_order according to a
total degree rule.

8.4.3.5 Kriging/Gaussian-Process Spatial Interpolation Models

In the current release of Dakota, we have two versions of supported spatial interpolation models. There is an additional exper-
imental version in Dakota’s standalone surrogates module that uses the keyword experimental gaussian_process
that is described at the end of this section. Of the supported versions, one is located in Dakota itself and the other in the Surf-
pack subpackage of Dakota which can be compiled in a standalone mode. These models are denoted as kriging dakota
and kriging surfpack or as gaussian_process dakota and gaussian_process surfpack. In Dakota re-
leases prior to 5.2, the dakota version was referred to as the gaussian_process model while the surfpack version
was referred to as the kriging model. As of Dakota 5.2, specifying only gaussian_process or kriging will default
to the surfpack version in all contexts except Bayesian calibration. For now, both versions are supported but the dakota
version is deprecated and intended to be removed in a future release. The two kriging or gaussian_process models
are very similar: the differences between them are explained in more detail below.

The Kriging, also known as Gaussian process (GP), method uses techniques developed in the geostatistics and spatial statistics
communities ( [22], [91]) to produce smooth surface fit models of the response values from a set of data points. The number of
times the fitted surface is differentiable will depend on the correlation function that is used. Currently, the Gaussian correlation
function is the only option for either version included in Dakota; this makes the GP model C'*°-continuous. The form of the
GP model is

fz)~g@)"B+r@)" R (f - GB) (8.20)

Dakota Version 6.15 User’s Manual generated on November 10, 2021



154 CHAPTER 8. MODELS

where z is the current point in n-dimensional parameter space; g(x) is the vector of trend basis functions evaluated at z; 3
is a vector containing the generalized least squares estimates of the trend basis function coefficients; r(z) is the correlation
vector of terms between x and the data points; R is the correlation matrix for all of the data points; f is the vector of response
values; and G is the matrix containing the trend basis functions evaluated at all data points. The terms in the correlation vector
and matrix are computed using a Gaussian correlation function and are dependent on an n-dimensional vector of correlation
parameters, § = {601,...,0,}7. By default, Dakota determines the value of @ using a Maximum Likelihood Estimation
(MLE) procedure. However, the user can also opt to manually set them in the gaussian_process surfpack model
by specifying a vector of correlation lengths, | = {l1,...,l,}" where §; = 1/(2I?). This definition of correlation lengths
makes their effect on the GP model’s behavior directly analogous to the role played by the standard deviation in a normal (a.k.a.
Gaussian) distribution. In the gaussian_process surpack model, we used this analogy to define a small feasible region
in which to search for correlation lengths. This region should (almost) always contain some correlation matrices that are well
conditioned and some that are optimal, or at least near optimal. More details on Kriging/GP models may be found in [64].

Since a GP has a hyper-parametric error model, it can be used to model surfaces with slope discontinuities along with multiple
local minima and maxima. GP interpolation is useful for both SBO and OUU, as well as for studying the global response
value trends in the parameter space. This surface fitting method needs a minimum number of design points equal to the sum
of the number of basis functions and the number of dimensions, n, but it is recommended to use at least double this amount.

The GP model is guaranteed to pass through all of the response data values that are used to construct the model. Generally, this
is a desirable feature. However, if there is considerable numerical noise in the response data, then a surface fitting method that
provides some data smoothing (e.g., quadratic polynomial, MARS) may be a better choice for SBO and OUU applications.
Another feature of the GP model is that the predicted response values, f (z), decay to the trend function, g(g)T 3, when z is
far from any of the data points from which the GP model was constructed (i.e., when the model is used for extrapolation).

As mentioned above, there are two gaussian_process models in Dakota, the surfpack version and the dakota ver-
sion. More details on the gaussian_process dakota model can be found in [103]. The differences between these
models are as follows:

¢ Trend Function: The GP models incorporate a parametric trend function whose purpose is to capture large-scale vari-
ations. In both models, the trend function can be a constant, linear,or reduced quadratic (main effects only, no in-
teraction terms) polynomial. This is specified by the keyword t rend followed by one of constant, linear, or
reduced_quadratic (in Dakota 5.0 and earlier, the reduced quadratic option for the dakota version was selected
using the keyword, quadratic). The
gaussian._process surfpack model has the additional option of a full (i.e. it includes interaction terms)
quadratic polynomial; this is accessed by following the t rend keyword with quadratic.

¢ Correlation Parameter Determination: Both of the gaussian_process models use a Maximum Likelihood Es-
timation (MLE) approach to find the optimal values of the hyper-parameters governing the mean and correlation
functions. By default both models use the global optimization method called DIRECT, although they search re-
gions with different extents. For the gaussian_process dakota model, DIRECT is the only option. The
gaussian_process surfpack model has several options for the optimization method used. These are speci-
fied by the optimization-method keyword followed by one of these strings:

— "global’ which uses the default DIRECT optimizer,
— "local’ which uses the CONMIN optimizer,
— ’sampling’ which generates several random guesses and picks the candidate with greatest likelihood, and

— "none’

The "none’ option, and the starting location of the  1ocal’ optimization, default to the center, in log(correlation
length) scale, of the small feasible region. However, these can also be user specified with the correlation_lengths
keyword followed by a list of n real numbers. The total number of evaluations of the gaussian_process surfpack
model’s likelihood function can be controlled using the max_trials keyword followed by a positive integer. Note
that we have found the  global’ optimization method to be the most robust.

¢ Ill-conditioning. One of the major problems in determining the governing values for a Gaussian process or Kriging
model is the fact that the correlation matrix can easily become ill-conditioned when there are too many input points
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close together. Since the predictions from the Gaussian process model involve inverting the correlation matrix, ill-
conditioning can lead to poor predictive capability and should be avoided. The gaussian_process surfpack
model defines a small feasible search region for correlation lengths, which should (almost) always contain some well
conditioned correlation matrices. In Dakota 5.1, the kriging (now gaussian_process surfpackorkriging
surfpack) model avoided ill-conditioning by explicitly excluding poorly conditioned R from consideration on the
basis of their having a large (estimate of) condition number; this constraint acted to decrease the size of admissible
correlation lengths. Note that a sufficiently bad sample design could require correlation lengths to be so short that any
interpolatory Kriging/GP model would become inept at extrapolation and interpolation.

The gaussian_process dakota model has two features to overcome ill-conditioning. The first is that the algo-
rithm will add a small amount of noise to the diagonal elements of the matrix (this is often referred to as a “nugget”) and
sometimes this is enough to improve the conditioning. The second is that the user can specify to build the GP based only
on a subset of points. The algorithm chooses an “optimal” subset of points (with respect to predictive capability on the
remaining unchosen points) using a greedy heuristic. This option is specified with the keyword point_selection
in the input file.

As of Dakota 5.2, the gaussian_process surfpack model has a similar capability. Points are not discarded
prior to the construction of the model. Instead, within the maximum likelihood optimization loop, when the correlation
matrix violates the explicit (estimate of) condition number constraint, the gaussian_process surfpack model
will perform a pivoted Cholesky factorization of the correlation matrix. A bisection search is then used to efficiently
find the last point for which the reordered correlation matrix is not too ill-conditioned. Subsequent reordered points
are excluded from the GP/Kriging model for the current set of correlation lengths, i.e. they are not used to construct
this GP model or compute its likelihood. When necessary, the gaussian_process surfpack model will auto-
matically decrease the order of the polynomial trend function. Once the maximum likelihood optimization has been
completed, the subset of points that is retained will be the one associated with the most likely set of correlation lengths.
Note that a matrix being ill-conditioned means that its rows or columns contain a significant amount of duplicate in-
formation. Since the points that were discarded were the ones that contained the least unique information, they should
be the ones that are the easiest to predict and provide maximum improvement of the condition number. However,
the gaussian_process surfpack model is not guaranteed to exactly interpolate the discarded points. Warning:
when two very nearby points are on opposite sides of a discontinuity, it is possible for one of them to be discarded by
this approach.

Note that a pivoted Cholesky factorization can be significantly slower than the highly optimized implementation of non-
pivoted Cholesky factorization in typical LAPACK distributions. A consequence of this is that the gaussian_process
surfpack model can take significantly more time to build than the gaussian_process dakota version. How-
ever, tests indicate that the gaussian_process surfpack version will often be more accurate and/or require
fewer evaluations of the true function than the gaussian_process dakota. For this reason, the gaussian_process
surfpack version is the default option as of Dakota 5.2.

 Gradient Enhanced Kriging (GEK). As of Dakota 5.2, the use_derivat ives keyword will cause the gaussian_process

surfpack model to be built from a combination of function value and gradient information. The gaussian_process
dakota model does not have this capability. Incorporating gradient information will only be beneficial if accurate and
inexpensive derivative information is available, and the derivatives are not infinite or nearly so. Here “inexpensive”
means that the cost of evaluating a function value plus gradient is comparable to the cost of evaluating only the function

value, for example gradients computed by analytical, automatic differentiation, or continuous adjoint techniques. It is

not cost effective to use derivatives computed by finite differences. In tests, GEK models built from finite difference
derivatives were also significantly less accurate than those built from analytical derivatives. Note that GEK’s correlation
matrix tends to have a significantly worse condition number than Kriging for the same sample design.

This issue was addressed by using a pivoted Cholesky factorization of Kriging’s correlation matrix (which is a small
sub-matrix within GEK’s correlation matrix) to rank points by how much unique information they contain. This re-
ordering is then applied to whole points (the function value at a point immediately followed by gradient information at
the same point) in GEK’s correlation matrix. A standard non-pivoted Cholesky is then applied to the reordered GEK
correlation matrix and a bisection search is used to find the last equation that meets the constraint on the (estimate
of) condition number. The cost of performing pivoted Cholesky on Kriging’s correlation matrix is usually negligible
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compared to the cost of the non-pivoted Cholesky factorization of GEK’s correlation matrix. In tests, it also resulted
in more accurate GEK models than when pivoted Cholesky or whole-point-block pivoted Cholesky was performed on
GEK’’s correlation matrix.

This surrogate model supports the domain decomposition option, further explained in 8.4.3.10.

The experimental Gaussian process model differs from the supported implementations in a few ways. First, at this time only
local, gradient-based optimization methods for MLE are supported. The user may provide the num_restarts keyword to
specify how many optimization runs from random initial guesses are performed. The appropriate number of runs to ensure
that the global minimum is found will be problem dependent, and when this keyword is omitted the optimizer is run twenty
times.

Second, build data for the surrogate is scaled to have zero mean and unit variance, and fixed bounds are imposed on the kernel
hyperparameters. The type of scaling and bound specification will be made user-configrable in a future release.

Third, like the other GP implementations in Dakota the user may employ a polynomial trend function by supplying the t rend
keyword. Supported trend functions include constant, linear, and quadratic polynomials, the last of these being a
full rather than reduced quadratic. Polynomial coefficients are determined alongside the kernel hyperparmeters through MLE.

Lastly, the use may specify a fixed non-negative value for the nugget parameter or may estimate it as part of the MLE procedure
through the £ ind_nugget keyword.

8.4.3.6 Artificial Neural Network (ANN) Models

The ANN surface fitting method in Dakota employs a stochastic layered perceptron (SLP) artificial neural network based on the
direct training approach of Zimmerman [159]. The SLP ANN method is designed to have a lower training cost than traditional
ANNs. This is a useful feature for SBO and OUU where new ANNSs are constructed many times during the optimization
process (i.e., one ANN for each response function, and new ANNS for each optimization iteration). The form of the SLP ANN
model is

f(x) ~ tanh(tanh((xAo + 60) A1 + 61)) 8.21)

where x is the current point in n-dimensional parameter space, and the terms Ao, 6o, A1, 61 are the matrices and vectors that
correspond to the neuron weights and offset values in the ANN model. These terms are computed during the ANN training
process, and are analogous to the polynomial coefficients in a quadratic surface fit. A singular value decomposition method is
used in the numerical methods that are employed to solve for the weights and offsets.

The SLP ANN is a non parametric surface fitting method. Thus, along with kriging and MARS, it can be used to model data
trends that have slope discontinuities as well as multiple maxima and minima. However, unlike kriging, the ANN surface is
not guaranteed to exactly match the response values of the data points from which it was constructed. This ANN can be used
with SBO and OUU strategies. As with kriging, this ANN can be constructed from fewer than n.,,,,, data points, however, it
is a good rule of thumb to use at least nc,,,,,, data points when possible.

8.4.3.7 Multivariate Adaptive Regression Spline (MARS) Models

This surface fitting method uses multivariate adaptive regression splines from the MARS3.6 package [51] developed at Stan-
ford University.

The form of the MARS model is based on the following expression:

. M
fx) =" amBn(x) (8.22)

where the a,, are the coefficients of the truncated power basis functions B,,, and M is the number of basis functions. The
MARS software partitions the parameter space into subregions, and then applies forward and backward regression methods
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to create a local surface model in each subregion. The result is that each subregion contains its own basis functions and
coefficients, and the subregions are joined together to produce a smooth, C%-continuous surface model.

MARS is a nonparametric surface fitting method and can represent complex multimodal data trends. The regression component
of MARS generates a surface model that is not guaranteed to pass through all of the response data values. Thus, like the
quadratic polynomial model, it provides some smoothing of the data. The MARS reference material does not indicate the
minimum number of data points that are needed to create a MARS surface model. However, in practice it has been found
that at least nc,,,, ., and sometimes as many as 2 to 4 times nc,,,,,, data points are needed to keep the MARS software from
terminating. Provided that sufficient data samples can be obtained, MARS surface models can be useful in SBO and OUU
applications, as well as in the prediction of global trends throughout the parameter space.

8.4.3.8 Radial Basis Functions

Radial basis functions are functions whose value typically depends on the distance from a center point, called the centroid, c.
The surrogate model approximation is then built up as the sum of K weighted radial basis functions:

K
Foo = wid(l| x — e |I) (8.23)
k=1

where the ¢ are the individual radial basis functions. These functions can be of any form, but often a Gaussian bell-shaped
function or splines are used. Our implementation uses a Gaussian radial basis function. The weights are determined via a
linear least squares solution approach. See [ 13] for more details. This surrogate model supports the domain decomposition
option, further explained in 8.4.3.10.

8.4.3.9 Moving Least Squares

Moving Least Squares can be considered a more specialized version of linear regression models. In linear regression, one
usually attempts to minimize the sum of the squared residuals, where the residual is defined as the difference between the
surrogate model and the true model at a fixed number of points. In weighted least squares, the residual terms are weighted so
the determination of the optimal coefficients governing the polynomial regression function, denoted by f (x), are obtained by
minimizing the weighted sum of squares at N data points:

> walll fxn) = f(xn) ) (8.24)

Moving least squares is a further generalization of weighted least squares where the weighting is “moved” or recalculated for
every new point where a prediction is desired. [109] The implementation of moving least squares is still under development.
We have found that it works well in trust region methods where the surrogate model is constructed in a constrained region over
a few points. It does not appear to be working as well globally, at least at this point in time.

8.4.3.10 Piecewise Decomposition Option for Global Surrogate Models

Regression techniques typically use all available sample points to approximate the underlying function anywhere in the do-
main. An alternative option is to use piecewise dcomposition to locally approximate the function at some point using a few
sample points from its neighborhood. This option currently supports Polynomial Regression, Gaussian Process (GP) Interpo-
lation, and Radial Basis Functions (RBF) Regression. This option requires a decomposition cell type. A valid cell type is one
where any point in the domain is assigned to some cell(s), and each cell identifies its neighbor cells. Currently, only Voronoi
cells are supported. Each cell constructs its own piece of the global surrogate, using the function information at its seed and a
few layers of its neighbors, parametrized by support_layers. It also supports an optional discontinuity detection capabil-
ity discontinuity_detection, specified by either a jump threshold value jump_threshold or a gradient threshold
one gradient_threshold.
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The surrogate construction uses all available data, including derivatives, not only function evaluations. The user should list
the keyword use_derivatives to indicate the availability of derivative information for the surrogate to use. If listed,
the user can replace the default response parameters no_gradients and no_hessians with other response options, e.g.,
numerical_gradients or analytic_hessians. More details on using gradients and Hessians, if available, can be
found in chapter 11.

The features of the current (Voronoi) piecewise decomposition choice are further explained below:

« In the Voronoi piecewise decomposition option, we decompose the high-dimensional parameter space using the implicit
Voronoi tessellation around the known function evaluations as seeds. Using this approach, any point in the domain is
assigned to a Voronoi cell using a simple nearest neighbor search, and the neighbor cells are then identified using Spoke
Darts without constructing an explicit mesh.

* The one-to-one mapping between the number of function evaluations and the number of Voronoi cells, regardless of the
number of dimensions, eliminates the curse of dimensionality associated with standard domain decompositions. This
Voronoi decomposition enables low-order piecewise polynomial approximation of the underlying function (and the
associated error estimate) in the neighborhood of each function evaluation, independently. Moreover, the tessellation is
naturally updated with the addition of new function evaluations.

Extending the piecewise decomposition option to other global surrogate models is under development.

8.4.3.11 Surrogate Diagnostic Metrics

The surrogate models provided by Dakota’s Surfpack package (polynomial, Kriging, ANN, MARS, RBF, and MLS) as well
as the experimental surrogates include the ability to compute diagnostic metrics on the basis of (1) simple prediction error
with respect to the training data, (2) prediction error estimated by cross-validation (iteratively omitting subsets of the training
data), and (3) prediction error with respect to user-supplied hold-out or challenge data. All diagnostics are based on differences
between o(x;) the observed value, and p(x;), the surrogate model prediction for training (or omitted or challenge) data point
z;. In the simple error metric case, the points z; are those used to train the model, for cross validation they are points
selectively omitted from the build, and for challenge data, they are supplementary points provided by the user. The basic
metrics are specified via the met rics keyword, followed by one or more of:

* sum_squared: y_ ., (o(x;) — p(x:))?

* mean_squared: = Y. | (o(x) — p(x:))?

e root_mean_squared: \/% S (o(x) — p(x4))?

e sum_abs: > i, |o(zi) — p(xd)|

* mean_abs: 23" | |o(zi) — p(i)]

e max_abs: max; |o(z;) — p(z;)|

. 2 _ X, pi—0)?

rsquared R” = W

Here, n is the number of data points used to create the model, and  is the mean of the true response values. RZ, developed for
and most useful with polynomial regression, quantifies the amount of variability in the data that is captured by the model. The
value of R? falls on in the interval [0, 1]. Values close to 1 indicate that the model matches the data closely. The remainder of
the metrics measure error, so smaller values indicate better fit.

Cross-validation: With the exception of R?, the above metrics can be computed via a cross-validation process. The class
of k-fold cross-validation metrics is used to predict how well a model might generalize to unseen data. The training data
is randomly divided into k partitions. Then k models are computed, each excluding the corresponding k*" partition of the
data. Each model is evaluated at the points that were excluded in its generation and any metrics specified above are computed
with respect to the held out data. A special case, when £ is equal to the number of data points, is known as leave-one-out
cross-validation or prediction error sum of squares (PRESS). To specify k-fold cross-validation or PRESS, follow the list of
metrics with cross_validate and/or press, respectively.
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Challenge data: A user may optionally specify challenge_points_file, adata file in freeform or annotated format that
contains additional trial point/response data, one point per row. When specified, any of the above metrics specified will be
computed with respect to the challenge data.

Caution is advised when applying and interpreting these metrics. In general, lower errors are better, but for interpolatory
models like Kriging models, will almost always be zero. Root-mean-squared and the absolute metrics are on the same scale as
the predictions and data. R? is meaningful for polynomial models, but less so for other model types. When possible, general
5-fold or 10-fold cross validation will provide more reliable estimates of the true model prediction error. Goodness-of-fit
metrics provide a valuable tool for analyzing and comparing models but must not be applied blindly.

8.4.4 Multifidelity Surrogate Models

A second type of surrogate is the model hierarchy type (also called multifidelity, variable fidelity, variable complexity, etc.).
In this case, a model that is still physics-based but is of lower fidelity (e.g., coarser discretization, reduced element order,
looser convergence tolerances, omitted physics) is used as the surrogate in place of the high-fidelity model. For example, an
inviscid, incompressible Euler CFD model on a coarse discretization could be used as a low-fidelity surrogate for a high-fidelity
Navier-Stokes model on a fine discretization.

8.4.5 Reduced Order Models

A third type of surrogate model involves reduced-order modeling techniques such as proper orthogonal decomposition (POD)
in computational fluid dynamics (also known as principal components analysis or Karhunen-Loeve in other fields) or spectral
decomposition (also known as modal analysis) in structural dynamics. These surrogate models are generated directly from a
high-fidelity model through the use of a reduced basis (e.g., eigenmodes for modal analysis or left singular vectors for POD)
and projection of the original high-dimensional system down to a small number of generalized coordinates. These surrogates
are still physics-based (and may therefore have better predictive qualities than data fits), but do not require multiple system
models of varying fidelity (as required for model hierarchy surrogates).

8.4.6 Surrogate Model Selection
This section offers some guidance on choosing from among the available surrogate model types.

* For Surrogate Based Local Optimization, i.e. the surrogate based_local method, with a trust region, either
surrogate local taylor_series or surrogate multipoint tana will probably work best. If for some
reason you wish or need to use a global surrogate (not recommended) then the best of these options is likely to be either
surrogate global gaussian_process surfpack or surrogate global moving_least_squares.

« For Efficient Global Optimization (EGO), i.e. the efficient_global method, the default
gaussian_process surfpack is likely to find a more optimal value and/or use fewer true function evaluations
than the alternative, gaussian_process dakota. However, the surfpack version will likely take more time to
build than the dakota version. Note that currently the use_derivatives keyword is not recommended for use
with EGO based methods.

* For EGO based global interval estimation (EGIE), i.e. the global_interval_est ego method, the default gaussian_process
surfpack will likely work better than the alternative gaussian_process dakota.

» For Efficient Global Reliability Analysis (EGRA), i.e. the global_ reliability method the surfpack and
dakota versions of the gaussian process tend to give similar answers with the dakota version tending to use fewer
true function evaluations. Since this is based on EGO, it is likely that the default sur fpack version is more accurate,
although this has not been rigorously demonstrated.

* For EGO based Dempster-Shafer Theory of Evidence, i.e. the global_evidence ego method, the default gaussian_process
surfpack will often use significantly fewer true function evaluations than the alternative gaussian_process
dakota.
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* When using a global surrogate to extrapolate, either the gaussian_process surfpackorpolynomial quadratic

or polynomial cubic is recommended.

* When there is over roughly two or three thousand data points and you wish to interpolate (or approximately interpolate)
then a Taylor series, Radial Basis Function Network, or Moving Least Squares fit is recommended. The only reason that
the gaussian_process surfpack model is not recommended is that it can take a considerable amount of time to
construct when the number of data points is very large. Use of the third party MARS package included in Dakota is
generally discouraged.

« In other situations that call for a global surrogate, the gaussian_process surfpack is generally recommended.
The use_derivatives keyword will only be useful if accurate and an inexpensive derivatives are available. Finite
difference derivatives are disqualified on both counts. However, derivatives generated by analytical, automatic differ-
entiation, or continuous adjoint techniques can be appropriate. Currently, first order derivatives, i.e. gradients, are the
highest order derivatives that can be used to construct the gaussian_process surfpack model; Hessians will not
be used even if they are available.

8.4.7 Python Interface to the Surrogates Module

Dakota 6.13 onwards uses Pybind11 [84] to provide a Python interface to the surrogates module
dakota.surrogates, which currently contains polynomial and Gaussian process regression surrogates. In this section we
describe how to enable the interface and provide a simple demonstration.

After installing Dakota, dakota.surrogates may be used by setting the environment variable PYTHONPATH to include
$DAK_INSTALL/share/dakota/Python. Note that doing so will also enable
dakota.interfacing as described in 10.8.

The Python code snippet below shows how a Gaussian process surrogate can be built from existing Numpy arrays and an op-
tional dictionary of configuration options, evaluated at a set of points, and serialized to disk for later use. The print_options
method writes the surrogate’s current configuration options to the console, which can useful for determining default settings.

import dakota.surrogates as daksurr

nugget_opts {"estimate nugget" : True}
config_opts = {"scaler name" : "none", "Nugget" : nugget_opts}

gp = daksurr.GaussianProcess (build_samples, build_response, config_opts)
gp.print_options ()
gp_eval_surr = gp.value (eval_samples)

daksurr.save (gp, "gp.bin", True)
The examples located in $SDAK_INSTALL/share/dakota/examples/official/surrogates/library cover
surrogate build/save/load workflows and other Python-accessible methods such as gradient and hessian evaluation.

As a word of caution, the configuration options for a surrogate loaded from disk will be empty because the current implemen-
tation does not serialize them, although the save command will generate a YAML file ClassName . yaml of configuration
options used by the surrogate for reference.

8.5 Nested Models

Nested models utilize a sub-iterator and a sub-model to perform a complete iterative study as part of every evaluation of the
model. This sub-iteration accepts variables from the outer level, performs the sub-level analysis, and computes a set of sub-
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level responses which are passed back up to the outer level. As described in the Models chapter of the Reference Manual [3],
mappings are employed for both the variable inputs to the sub-model and the response outputs from the sub-model.

In the variable mapping case, primary and secondary variable mapping specifications are used to map from the top-level
variables into the sub-model variables. These mappings support three possibilities in any combination: (1) insertion of an
active top-level variable value into an identified sub-model distribution parameter for an identified active sub-model variable,
(2) insertion of an active top-level variable value into an identified active sub-model variable value, and (3) addition of an
active top-level variable value as an inactive sub-model variable, augmenting the active sub-model variables.

In the response mapping case, primary and secondary response mapping specifications are used to map from the sub-model
responses back to the top-level responses. These specifications provide real-valued multipliers that are applied to the sub-
iterator response results to define the outer level response set. These nested data results may be combined with non-nested
data through use of the “optional interface” component within nested models.

The nested model is used within a wide variety of multi-iterator, multi-model solution approaches. For example, optimization
within optimization (for hierarchical multidisciplinary optimization), uncertainty quantification within uncertainty quantifica-
tion (for mixed aleatory-epistemic UQ), uncertainty quantification within optimization (for optimization under uncertainty),
and optimization within uncertainty quantification (for uncertainty of optima) are all supported, with and without surrogate
model indirection. Several examples of nested model usage are provided in Chapter 15, most notably mixed epistemic-aleatory
UQ in Section 15.1, optimization under uncertainty (OUU) in Section 15.2, and surrogate-based UQ in Section 15.3.

8.6 Random Field Models

As of Dakota 6.4, we have a preliminary capability to generate random fields. This is an experimental capability that is
undergoing active development, so the following description and the associated syntax may change.

Our goal with a random field model is to have a fairly general capability, where we can generate a random field representation
in one of three ways: from data, from simulation runs (e.g. running an ensemble of simulations where each one produces a
field response), or from a covariance matrix defined over a mesh. Then, a random field model (such as a Karhunen-Loeve
expansion) will be built based on the data. A final step is to draw realizations from the random field model to propagate to
another simulation model. For example, the random field may represent a pressure or temperature boundary condition for a
simulation.

The random field model is currently specified with a model type of random_field. The first section of the random field
specification tells Dakota what data to use to build the random field. This is specified with build_source. The source of
data to build the random field may be a file with data (where the N rows of data correspond to N samples of the random field
and the M columns correspond to field values), or it may be a simulation that generates field data, or it may be specified given
a mesh and a covariance matrix governing how the field varies over the mesh. In the case of using a simulation to generate
field data, the simulation is defined with dace_method-pointer. In the case of using a mesh and a covariance, the form
of the covariance is defined with analytic_covariance.

The next section of the random field model specifies the form of the expansion, expansion_form. This can be either
a Karhunen-Loeve expansion or a Principal components analysis. These are very similar: both involve the eigenvalues of
the covariance matrix of the field data. The only difference is in the treatment of the estimation of the coefficients of the
eigenvector basis functions. In the PCA case, we have developed an approach which makes the coefficients explicit functions
of the uncertain variables used to generate the random field. The specification of the random field can also include the number
of bases to retain or a truncation tolerance, which defines the percent variance that the expansion should capture.

The final section of the random field model allows the user to specify a pointer to a model over which the random field will be
propagated, propagation.model_pointer, meaning the model which will be driven with the random field input.
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8.7 Active Subspace Models

The active subspace technique [17] seeks directions in the input space for which the response function(s) show little variation.
After a rotation to align with these directions, significant dimension reduction may be possible.

The Dakota model type subspace manages the input subspace identification and transforms the original simulation model
into the new coordinates. This capability is new as of Dakota 6.4 and under very active development, so the following
information may be outdated.

In Dakota 6.4, the active subspace model can be used in conjunction with the following uncertainty quantification methods:

e polynomial_chaos
¢ sampling

e local reliability
An error message similar to:
Error: Resizing is not yet supported in method <method name>.

will be written and Dakota will exit if the active subspace model is used with a non-compatible method. The set of compatible
methods will be expanded in future releases.

The active subspace implementation in Dakota 6.4 first transforms uncertain variables to standard normal distributions using
a Nataf transformm before forming the subspace. This is a nonlinear transformation for non-normally distributed uncertain
variables and may potentially decrease sparse structure in a fullspace model. Future Dakota releases will not use this transfor-
mation and should perform better in the general case.

The only required keyword when using a subspace model is the actual_model_pointer which points to the underlying
model (specified by its id_-model) on which to build the subspace. The subspace model requires either analytical (pre-
ferred) or numerical gradients of the response functions. The active subspace model first samples the gradient of the fullspace
model. The number of gradient samples can be specified with initial_samples. The gradient samples are compiled into
the columns of a matrix. A singular value decomposition is performed of the derivative matrix and the resulting singular values
and vectors are used to determine the basis vectors and size of the active subspace.

Constantine [ 7] recommends choosing initial_samples such that:
initial_samples = aklog(m),

where « is an oversampling factor between 2 and 10, k is the number of singular values to approximate, and m is the number
of fullspace variables. To ensure accurate results, k should be greater than the estimated subspace size determined by one of
the truncation methods described below.

Dakota has everal metrics to estimate the size of an active subspace:

e constantine (default)
* bing_11i
* energy

e cross_validation

Additionally, if the desired subspace size is known it can be explicitly selected using the input parameter dimension.
The constantine and bing_11i truncation methods both use bootstrap sampling of the compiled derivative matrix to
estimate an active subspace size. The number of bootstrap samples used with these methods can be specified with the keyword
bootstrap_samples, but typically the default value works well. The energy method computes the number of bases so
that the subspace representation accounts for all but a maximum percentage (specified as a decimal) of the total eigenvalue
energy. This value is specified using the t runcation_tolerance keyword.

For more information on active subspaces please consult the Theory Manual [24] and/or references [20, 18, 17].
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Variables

9.1 Overview

The variables specification in a Dakota input file specifies the parameter set to be iterated by a particular method. In
the case of an optimization study, these variables are adjusted in order to locate an optimal design; in the case of parameter
studies/sensitivity analysis/design of experiments, these parameters are perturbed to explore the parameter space; and in the
case of uncertainty analysis, the variables are associated with distribution/interval characterizations which are used to compute
corresponding distribution/interval characterizations for response functions. To accommodate these and other types of studies,
Dakota supports design, uncertain, and state variable types for continuous and discrete variable domains. Uncertain types can
be further categorized as either aleatory or epistemic, and discrete domains can include discrete range, discrete integer set,
discrete string set, and discrete real set.

This chapter will present a brief overview of the main types of variables and their uses, as well as cover some user issues relating
to file formats and the active set vector. For a detailed description of variables section syntax and example specifications, refer
to the variables keywords in the Dakota Reference Manual [3].

9.2 Design Variables

Design variables are those variables which are modified in the course of determining an optimal design. These variables may
be 